Passivity-Based Control of a Doubly Fed Induction Generator System under Unbalanced Grid Voltage Conditions
Authors
Jiawei Huang, Honghua Wang, Chong Wang
Abstract
According to the theory of passivity-based control (PBC), this paper establishes a port-controlled Hamiltonian system with dissipation (PCHD) model for a doubly fed induction generator (DFIG) system under unbalanced grid voltage conditions and proposes a method of interconnection and damping assignment passivity-based control (IDA-PBC) of the system under such conditions. By using this method, the rotor-side converter and grid-side converter can be controlled simultaneously in order to improve fault ride-through capability of the DFIG system. Simulation results indicate that this IDA-PBC strategy effectively suppresses fluctuations of output current and power in the DFIG system during unbalanced grid voltage sag/swell, enhances dynamic performance, and improves the robustness of the system.
Citation
- Journal: Energies
- Year: 2017
- Volume: 10
- Issue: 8
- Pages: 1139
- Publisher: MDPI AG
- DOI: 10.3390/en10081139
BibTeX
@article{Huang_2017,
title={{Passivity-Based Control of a Doubly Fed Induction Generator System under Unbalanced Grid Voltage Conditions}},
volume={10},
ISSN={1996-1073},
DOI={10.3390/en10081139},
number={8},
journal={Energies},
publisher={MDPI AG},
author={Huang, Jiawei and Wang, Honghua and Wang, Chong},
year={2017},
pages={1139}
}
References
- Blaabjerg, F. & Ke Ma. Future on Power Electronics for Wind Turbine Systems. IEEE J. Emerg. Sel. Topics Power Electron. 1, 139–152 (2013) – 10.1109/jestpe.2013.2275978
- Cardenas, R., Pena, R., Alepuz, S. & Asher, G. Overview of Control Systems for the Operation of DFIGs in Wind Energy Applications. IEEE Trans. Ind. Electron. 60, 2776–2798 (2013) – 10.1109/tie.2013.2243372
- Oliveira, F. et al. Enhancing LVRT of DFIG by Using a Superconducting Current Limiter on Rotor Circuit. Energies 9, 16 (2015) – 10.3390/en9010016
- Lei, Y., Mullane, A., Lightbody, G. & Yacamini, R. Modeling of the Wind Turbine With a Doubly Fed Induction Generator for Grid Integration Studies. IEEE Trans. On Energy Conversion 21, 257–264 (2006) – 10.1109/tec.2005.847958
- Yu, S., Fernando, T., Chau, T. K. & Iu, H. H.-C. Voltage Control Strategies for Solid Oxide Fuel Cell Energy System Connected to Complex Power Grids Using Dynamic State Estimation and STATCOM. IEEE Trans. Power Syst. 32, 3136–3145 (2017) – 10.1109/tpwrs.2016.2615075
- Wessels, C., Gebhardt, F. & Fuchs, F. W. Fault Ride-Through of a DFIG Wind Turbine Using a Dynamic Voltage Restorer During Symmetrical and Asymmetrical Grid Faults. IEEE Trans. Power Electron. 26, 807–815 (2011) – 10.1109/tpel.2010.2099133
- Tanvir, A., Merabet, A. & Beguenane, R. Real-Time Control of Active and Reactive Power for Doubly Fed Induction Generator (DFIG)-Based Wind Energy Conversion System. Energies 8, 10389–10408 (2015) – 10.3390/en80910389
- Lima, F. K. A., Luna, A., Rodriguez, P., Watanabe, E. H. & Blaabjerg, F. Rotor Voltage Dynamics in the Doubly Fed Induction Generator During Grid Faults. IEEE Trans. Power Electron. 25, 118–130 (2010) – 10.1109/tpel.2009.2025651
- Li, J. et al. Coordinated Control Strategy for a Hybrid Wind Farm with DFIG and PMSG under Symmetrical Grid Faults. Energies 10, 669 (2017) – 10.3390/en10050669
- Hu, J., Nian, H., Xu, H. & He, Y. Dynamic Modeling and Improved Control of DFIG Under Distorted Grid Voltage Conditions. IEEE Trans. Energy Convers. 26, 163–175 (2011) – 10.1109/tec.2010.2071875
- Hu, J. & He, Y. Reinforced Control and Operation of DFIG-Based Wind-Power-Generation System Under Unbalanced Grid Voltage Conditions. IEEE Trans. Energy Convers. 24, 905–915 (2009) – 10.1109/tec.2008.2001434
- Li, R., Geng, H. & Yang, G. Asymmetrical high voltage ride through control strategy of grid-side converter for grid-connected renewable energy equipment. 2014 International Power Electronics and Application Conference and Exposition 496–501 (2014) doi:10.1109/peac.2014.7037906 – 10.1109/peac.2014.7037906
- Fang, Y., Sun, D. & Xiong, P. A coordinated control strategy of DFIG-based WECS for high voltage ride-through enhancement. 2014 17th International Conference on Electrical Machines and Systems (ICEMS) 2808–2814 (2014) doi:10.1109/icems.2014.7013976 – 10.1109/icems.2014.7013976
- Xue, H., Wang, Y. & Yang, F. Adaptive passivity-based control strategies of doubly fed induction wind power generator systems. The 2nd International Symposium on Power Electronics for Distributed Generation Systems 731–734 (2010) doi:10.1109/pedg.2010.5545935 – 10.1109/pedg.2010.5545935
- Seleme, S. I., Silva, S. R. & Soares, L. T. L. Stabilization of Back-to-Back converter in wind generation system connected to the grid: IDA-PBC versus PI Control. 2014 16th European Conference on Power Electronics and Applications 1–8 (2014) doi:10.1109/epe.2014.6910858 – 10.1109/epe.2014.6910858
- Qu, Y. B. & Song, H. H. Energy-based coordinated control of wind energy conversion system with DFIG. International Journal of Control 84, 2035–2045 (2011) – 10.1080/00207179.2011.631588
- López-Garcı́a, I., Espinosa-Pérez, G., Siguerdidjane, H. & Dòria-Cerezo, A. On the passivity-based power control of a doubly-fed induction machine. International Journal of Electrical Power & Energy Systems 45, 303–312 (2013) – 10.1016/j.ijepes.2012.08.067
- López-García, I., Beltran-Carbajal, F., Espinosa-Pérez, G. & Escarela-Perez, R. Passivity-based power control of a doubly fed induction generator with unknown parameters. Int. Trans. Electr. Energ. Syst. 26, 2402–2424 (2016) – 10.1002/etep.2213
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Xu, L. & Wang, Y. Dynamic Modeling and Control of DFIG-Based Wind Turbines Under Unbalanced Network Conditions. IEEE Trans. Power Syst. 22, 314–323 (2007) – 10.1109/tpwrs.2006.889113
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Hu, J., He, Y., Xu, L. & Williams, B. W. Improved Control of DFIG Systems During Network Unbalance Using PI–R Current Regulators. IEEE Trans. Ind. Electron. 56, 439–451 (2009) – 10.1109/tie.2008.2006952