Authors

Ramtin Rakhsha, Daniela Constantinescu

Abstract

For distributed haptic cooperation systems, this paper develops a framework for virtual environments such that the design of the coordinating controllers is decoupled from the network topology and the communication issues. The discrete-time n-port passivity of the shared virtual object (SVO) is presented when n SVO copies are distributed on an undirected and connected communication topology with unreliable data transmission. Wave nodes as passive network elements can be implemented on multilateral wave-based communication architecture to passively distribute power across the network. In this note, the wave node scheme introduced in [16] is employed to construct a passive wave-based network architecture in order to passively interconnect multiple discrete-time port-Hamiltonian local SVO copies alongside their coordinating controllers. The performance analysis shows that the proposed network architecture: (i) possesses n-port passivity over a network with time-varying delay and packet-loss; (ii) is lossless when subjected to communications with no time delay; and (iii) offers less dissipation comparing to the network structures built based on the node scheme proposed in [18]. Simulations in which a VO is shared among four peers across a network with constant and varying time-delay validate the analysis.

Citation

  • Journal: 2014 IEEE Haptics Symposium (HAPTICS)
  • Year: 2014
  • Volume:
  • Issue:
  • Pages: 221–226
  • Publisher: IEEE
  • DOI: 10.1109/haptics.2014.6775458

BibTeX

@inproceedings{Rakhsha_2014,
  title={{Passive shared virtual environment for distributed haptic cooperation}},
  DOI={10.1109/haptics.2014.6775458},
  booktitle={{2014 IEEE Haptics Symposium (HAPTICS)}},
  publisher={IEEE},
  author={Rakhsha, Ramtin and Constantinescu, Daniela},
  year={2014},
  pages={221--226}
}

Download the bib file

References

  • Lee, D. & Huang, K. On Passive Non-Iterative Variable-Step Numerical Integration of Mechanical Systems for Haptic Rendering. ASME 2008 Dynamic Systems and Control Conference, Parts A and B 1147–1154 (2008) doi:10.1115/dscc2008-2257 – 10.1115/dscc2008-2257
  • Kim, Y.-B., Han, S.-H., Kim, S.-J., Kim, E.-J. & Song, C.-G. Multi-Player Virtual Ping-Pong Game. 17th International Conference on Artificial Reality and Telexistence (ICAT 2007) 269–273 (2007) doi:10.1109/icat.2007.34 – 10.1109/icat.2007.34
  • leblanc, A Passivity-Based Approach to Group Coordination in Multi-Agent Networks Volume 89 of Lecture Notes in Electrical Engineering (2011)
  • Huang, K. & Lee, D. Consensus-Based Peer-to-Peer Control Architecture for Multiuser Haptic Interaction Over the Internet. IEEE Trans. Robot. 29, 417–431 (2013) – 10.1109/tro.2012.2229672
  • Kanno, T. & Yokokohji, Y. Multilateral teleoperation control over time-delayed computer networks using wave variables. 2012 IEEE Haptics Symposium (HAPTICS) 125–131 (2012) doi:10.1109/haptic.2012.6183780 – 10.1109/haptic.2012.6183780
  • Hatanaka, T., Igarashi, Y., Fujita, M. & Spong, M. W. Passivity-Based Pose Synchronization in Three Dimensions. IEEE Trans. Automat. Contr. 57, 360–375 (2012) – 10.1109/tac.2011.2166668
  • Hogan, N. Impedance Control: An Approach to Manipulation: Part I—Theory. Journal of Dynamic Systems, Measurement, and Control 107, 1–7 (1985) – 10.1115/1.3140702
  • Fotoohi, M., Sirouspour, S. & Capson, D. Stability and Performance Analysis of Centralized and Distributed Multi-rate Control Architectures for Multi-user Haptic Interaction. The International Journal of Robotics Research 26, 977–994 (2007) – 10.1177/0278364907082049
  • Hannaford, B. & Jee-Hwan Ryu. Time-domain passivity control of haptic interfaces. IEEE Trans. Robot. Automat. 18, 1–10 (2002) – 10.1109/70.988969
  • Navarro-López, E. M. Several dissipativity and passivity implications in thelinear discrete‐time setting. Mathematical Problems in Engineering 2005, 599–616 (2005) – 10.1155/mpe.2005.599
  • Minogue, J., Gail Jones, M., Broadwell, B. & Oppewall, T. The impact of haptic augmentation on middle school students’ conceptions of the animal cell. Virtual Reality 10, 293–305 (2006) – 10.1007/s10055-006-0052-4
  • Niemeyer, G. & Slotine, J.-J. E. Stable adaptive teleoperation. IEEE J. Oceanic Eng. 16, 152–162 (1991) – 10.1109/48.64895
  • rakhsha, Enhanced stability of three-users multirate distributed haptic cooperation via coordination to average peer position. The Fourth International Conference on Advances in Computer-Human Interactions ACHI 2011 (2011)
  • Sankaranarayanan, G. & Hannaford, B. Virtual Coupling Schemes for Position Coherency in Networked Haptic Environments. The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006. 853–858 doi:10.1109/biorob.2006.1639197 – 10.1109/biorob.2006.1639197
  • secchi, Control of Interactive Robotic Interface (2007)
  • Stramigioli, S., Secchi, C., van der Schaft, A. J. & Fantuzzi, C. Sampled data systems passivity and discrete port-Hamiltonian systems. IEEE Trans. Robot. 21, 574–587 (2005)10.1109/tro.2004.842330
  • Sugarman, H., Dayan, E., Weisel-Eichler, A. & Tiran, J. The Jerusalem TeleRehabilitation System, a New Low-Cost, Haptic Rehabilitation Approach. CyberPsychology & Behavior 9, 178–182 (2006) – 10.1089/cpb.2006.9.178
  • Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1996). doi:10.1007/3-540-76074-1 – 10.1007/3-540-76074-1
  • Yokokohji, Y., Tsujioka, T. & Yoshikawa, T. Bilateral control with time-varying delay including communication blackout. Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002 285–292 doi:10.1109/haptic.2002.998970 – 10.1109/haptic.2002.998970
  • Arbabtafti, M. et al. Physics-Based Haptic Simulation of Bone Machining. IEEE Trans. Haptics 4, 39–50 (2011) – 10.1109/toh.2010.5
  • Anderson, R. J. & Spong, M. W. Bilateral control of teleoperators with time delay. IEEE Trans. Automat. Contr. 34, 494–501 (1989) – 10.1109/9.24201
  • Chopra, N. & Spong, M. W. Passivity-Based Control of Multi-Agent Systems. Advances in Robot Control 107–134 doi:10.1007/978-3-540-37347-6_6 – 10.1007/978-3-540-37347-6_6
  • Alhalabi, M. O., Horiguchi, S. & Kunifuji, S. An experimental study on the effects of Network delay in Cooperative Shared Haptic Virtual Environment. Computers & Graphics 27, 205–213 (2003) – 10.1016/s0097-8493(02)00277-7
  • Bianchini, G., Orlandesi, M. & Prattichizzo, D. Passivity-based Analysis and Design of Multi-Contact Haptic Systems via LMIs. Advances in Haptics (2010) doi:10.5772/8681 – 10.5772/8681
  • arioui, Stable shared virtual environment haptic interaction under time-varying delay. 8th IEEE Methods and Models in Automation and Robotics (2002)
  • Arioui, H., Kheddar, A. & Mammar, S. A predictive wave-based approach for time delayed virtual environments haptics systems. Proceedings. 11th IEEE International Workshop on Robot and Human Interactive Communication 134–139 doi:10.1109/roman.2002.1045611 – 10.1109/roman.2002.1045611
  • Arcak, M. Passivity as a Design Tool for Group Coordination. IEEE Trans. Automat. Contr. 52, 1380–1390 (2007) – 10.1109/tac.2007.902733
  • Joono Cheong, Niculescu, S.-I. & Kim, C. Motion Synchronization Control of Distributed Multisubsystems With Invariant Local Natural Dynamics. IEEE Trans. Robot. 25, 382–398 (2009) – 10.1109/tro.2008.2011529
  • Borghesan, G., Macchelli, A. & Melchiorri, C. Interconnection and Simulation Issues in Haptics. IEEE Trans. Haptics 3, 266–279 (2010)10.1109/toh.2010.24