On the relation between cosymplectic and symplectic structures
Authors
Abstract
In this paper we study some aspects of the relationship between cosymplectic and symplectic structures. In particular, we show that similar to the symplectic case, one can prove a nonsqueezing theorem for cosymplectomorphisms on R 2 m + 1 . Using this nonsqueezing theorem, we can define the concept of “cosymplectic capacity”. We show that the set of all cosymplectic capacities on cosymplectic manifolds of dimension 2 m + 1 has a close relationship with the set of all symplectic capacities on symplectic manifolds of dimension 2m. Furthermore, we study the relationship between fixed points of cosymplectomorphisms and symplectomorphisms.
Keywords
Symplectic structure; Cosymplectic structure; B-symplectic structure; Symplectic capacity; Cosymplectic capacity; Fixed point
Citation
- Journal: Journal of Geometry and Physics
- Year: 2022
- Volume: 178
- Issue:
- Pages: 104538
- Publisher: Elsevier BV
- DOI: 10.1016/j.geomphys.2022.104538
BibTeX
@article{Shafiee_2022,
title={{On the relation between cosymplectic and symplectic structures}},
volume={178},
ISSN={0393-0440},
DOI={10.1016/j.geomphys.2022.104538},
journal={Journal of Geometry and Physics},
publisher={Elsevier BV},
author={Shafiee, Mohammad},
year={2022},
pages={104538}
}
References
- Albert, C. Le théorème de réduction de Marsden-Weinstein en géométrie cosymplectique et de contact. Journal of Geometry and Physics vol. 6 627–649 (1989) – 10.1016/0393-0440(89)90029-6
- Bazzoni, G. & Goertsches, O. K-Cosymplectic manifolds. Annals of Global Analysis and Geometry vol. 47 239–270 (2014) – 10.1007/s10455-014-9444-y
- Cantrijn, F., Leon, M. de & Lacomba, E. A. Gradient vector fields on cosymplectic manifolds. Journal of Physics A: Mathematical and General vol. 25 175–188 (1992) – 10.1088/0305-4470/25/1/022
- Cappelletti-Montano,
- Chamseddine, A. H. Topological gauge theory of gravity in five and all odd dimensions. Physics Letters B vol. 233 291–294 (1989) – 10.1016/0370-2693(89)91312-9
- Cieliebak,
- de León, M., Merino, E., Oubiña, J. A., Rodrigues, P. R. & Salgado, M. R. Hamiltonian systems on k-cosymplectic manifolds. Journal of Mathematical Physics vol. 39 876–893 (1998) – 10.1063/1.532358
- de Leon, Cosymplectic reduction for singular momentum maps. J. Phys. A, Math. Theor. (2017)
- de Leon, Cosymplectic and contact structures to resolve time-dependent and dissipative Hamiltonian system. J. Phys. A, Math. Theor. (1993)
- Guillemin, Codimension one symplectic foliations and regular Poisson structures. Bull. Braz. Math. Soc. N.S. (2011)
- Guillemin, V., Miranda, E. & Pires, A. R. Symplectic and Poisson geometry on b-manifolds. Advances in Mathematics vol. 264 864–896 (2014) – 10.1016/j.aim.2014.07.032
- Hitchin, N. Generalized Calabi-Yau Manifolds. The Quarterly Journal of Mathematics vol. 54 281–308 (2003) – 10.1093/qmath/hag025
- Libermann, Sur les automorphismes infinitesimaux des structures symplectiques et des structures de contact. (1959)
- McDuff, D. & Salamon, D. Introduction to Symplectic Topology. (1995) doi:10.1093/oso/9780198511779.001.0001 – 10.1093/oso/9780198511779.001.0001
- Tchuiaga,