Authors

K. J. Petersen, J. R. Brinkerhoff

Abstract

Cryogenic fluids are used in a myriad of different applications not limited to green fuels, medical devices, spacecraft, and cryoelectronics. In this review, we elaborate on these applications and synthesize recent lattice Boltzmann methods (LBMs) including collision operators, boundary conditions, grid-refinement techniques, and multiphase models that have enabled the simulation of turbulence, thermodynamic phase change, and non-isothermal effects in a wide array of fluids, including cryogens. The LBM has reached a mature state over the last three decades and become a strong alternative to the conventional Navier–Stokes equations for simulating complex, rarefied, thermal, multiphase fluid systems. Moreover, the method’s scalability boosts the efficiency of large-scale fluid flow computations on parallel clusters, including heterogeneous clusters with graphics card-based accelerators. Despite this maturity, the LBM has only recently experienced limited use in the study of cryogenic fluid systems. Therefore, it is fitting to emphasize the usefulness of the LBM for simulating computationally prohibitive, complex cryogenic flows. We expect that the method will be employed more extensively in the future owing to its simple representation of molecular interaction and consequently thermodynamic changes of state, surface tension effects, non-ideal effects, and boundary treatments, among others.

Citation

  • Journal: Physics of Fluids
  • Year: 2021
  • Volume: 33
  • Issue: 4
  • Pages:
  • Publisher: AIP Publishing
  • DOI: 10.1063/5.0046938

BibTeX

@article{Petersen_2021,
  title={{On the lattice Boltzmann method and its application to turbulent, multiphase flows of various fluids including cryogens: A review}},
  volume={33},
  ISSN={1089-7666},
  DOI={10.1063/5.0046938},
  number={4},
  journal={Physics of Fluids},
  publisher={AIP Publishing},
  author={Petersen, K. J. and Brinkerhoff, J. R.},
  year={2021}
}

Download the bib file

References

  • Rando, N. Cryogenics in space. Observing Photons in Space 639–655 (2013) doi:10.1007/978-1-4614-7804-1_37 – 10.1007/978-1-4614-7804-1_37
  • Momirlan, M. & Veziroglu, T. N. Current status of hydrogen energy. Renewable and Sustainable Energy Reviews vol. 6 141–179 (2002) – 10.1016/s1364-0321(02)00004-7
  • Stratification, Rollover and Handling of LNG, LPG and Other Cryogenic Liquid Mixtures (2016)
  • Shoji, M. Studies of boiling chaos: a review. International Journal of Heat and Mass Transfer vol. 47 1105–1128 (2004) – 10.1016/j.ijheatmasstransfer.2003.09.024
  • Utturkar, Y., Wu, J., Wang, G. & Shyy, W. Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion. Progress in Aerospace Sciences vol. 41 558–608 (2005) – 10.1016/j.paerosci.2005.10.002
  • Yeoh, G. H. & Zhang, X. Computational fluid dynamics and population balance modelling of nucleate boiling of cryogenic liquids: Theoretical developments. The Journal of Computational Multiphase Flows vol. 8 178–200 (2016) – 10.1177/1757482x16674217
  • Berenson, P. J. Film-Boiling Heat Transfer From a Horizontal Surface. Journal of Heat Transfer vol. 83 351–356 (1961) – 10.1115/1.3682280
  • Liquid-Vapor Phase-Change Phenomena (2018)
  • Magaletti, F., Georgoulas, A. & Marengo, M. Unraveling low nucleation temperatures in pool boiling through fluctuating hydrodynamics simulations. International Journal of Multiphase Flow vol. 130 103356 (2020) – 10.1016/j.ijmultiphaseflow.2020.103356
  • Mukherjee, A. & Kandlikar, S. G. Numerical simulation of growth of a vapor bubble during flow boiling of water in a microchannel. Microfluidics and Nanofluidics vol. 1 137–145 (2005) – 10.1007/s10404-004-0021-8
  • Chaos in boiling on a small-size heater. (1995)
  • Tatsumi, Y. & Nishijima, S. Effect of helium convection on cryogenic stability of superconducting magnet. IEEE Transactions on Appiled Superconductivity vol. 13 1760–1763 (2003) – 10.1109/tasc.2003.812884
  • RUBI—a Reference mUltiscale Boiling Investigation for the Fluid Science Laboratory. (2010)
  • Basha, O., Olewski, T., Véchot, L., Castier, M. & Mannan, S. Modeling of pool spreading of LNG on land. Journal of Loss Prevention in the Process Industries vol. 30 307–314 (2014) – 10.1016/j.jlp.2014.04.012
  • Gopalaswami, N., Olewski, T., Véchot, L. N. & Mannan, M. S. Small-scale experimental study of vaporization flux of liquid nitrogen released on water. Journal of Hazardous Materials vol. 297 8–16 (2015) – 10.1016/j.jhazmat.2015.04.057
  • Gopalaswami, N., Vechot, L., Olewski, T. & Mannan, M. S. Small-scale experimental study of vaporization flux of liquid nitrogen released on ice. Journal of Loss Prevention in the Process Industries vol. 37 124–131 (2015) – 10.1016/j.jlp.2015.07.006
  • Schmetz, J. et al. Supplement to An Introduction to Meteosat Second Generation (MSG). Bulletin of the American Meteorological Society vol. 83 992–992 (2002) – 10.1175/bams-83-7-schmetz-2
  • Research and development of analog HTS microwave components for possible space applications. (1993)
  • Braginski, A. I. Superconducting electronics coming to market. IEEE Transactions on Appiled Superconductivity vol. 9 2825–2836 (1999) – 10.1109/77.783621
  • Cryogenic reactant storage for lunar base regenerative fuel cells. (1989)
  • Hardy, J., Pomeau, Y. & de Pazzis, O. Time Evolution of a Two-Dimensional Classical Lattice System. Physical Review Letters vol. 31 276–279 (1973) – 10.1103/physrevlett.31.276
  • Aidun, C. K. & Clausen, J. R. Lattice-Boltzmann Method for Complex Flows. Annual Review of Fluid Mechanics vol. 42 439–472 (2010) – 10.1146/annurev-fluid-121108-145519
  • Arumuga Perumal, D. & Dass, A. K. A Review on the development of lattice Boltzmann computation of macro fluid flows and heat transfer. Alexandria Engineering Journal vol. 54 955–971 (2015) – 10.1016/j.aej.2015.07.015
  • Chen, S. & Doolen, G. D. LATTICE BOLTZMANN METHOD FOR FLUID FLOWS. Annual Review of Fluid Mechanics vol. 30 329–364 (1998) – 10.1146/annurev.fluid.30.1.329
  • Li, Q. et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Progress in Energy and Combustion Science vol. 52 62–105 (2016) – 10.1016/j.pecs.2015.10.001
  • Chapter 1: The Boltzmann equation and fluid dynamics. Handbook of Mathematical Fluid Mechanics (2002)
  • Harwood, A. R. G., O’Connor, J., Sanchez Muñoz, J., Camps Santasmasas, M. & Revell, A. J. LUMA: A many-core, Fluid–Structure Interaction solver based on the Lattice-Boltzmann Method. SoftwareX vol. 7 88–94 (2018) – 10.1016/j.softx.2018.02.004
  • Lattice Boltzmann method for spacecraft propellant slosh simulation. (2015)
  • Shan, X. & Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E vol. 47 1815–1819 (1993) – 10.1103/physreve.47.1815
  • Lattice Boltzmann Method and Its Applications in Engineering (2013)
  • Bhatnagar, P. L., Gross, E. P. & Krook, M. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems. Physical Review vol. 94 511–525 (1954) – 10.1103/physrev.94.511
  • Mazloomi M., A., Chikatamarla, S. S. & Karlin, I. V. Entropic lattice Boltzmann method for multiphase flows: Fluid-solid interfaces. Physical Review E vol. 92 (2015) – 10.1103/physreve.92.023308
  • Mazloomi M, A., Chikatamarla, S. S. & Karlin, I. V. Entropic Lattice Boltzmann Method for Multiphase Flows. Physical Review Letters vol. 114 (2015) – 10.1103/physrevlett.114.174502
  • Pareschi, G., Frapolli, N., Chikatamarla, S. S. & Karlin, I. V. Conjugate heat transfer with the entropic lattice Boltzmann method. Physical Review E vol. 94 (2016) – 10.1103/physreve.94.013305
  • Karlin, I. V., Ferrante, A. & Öttinger, H. C. Perfect entropy functions of the Lattice Boltzmann method. Europhysics Letters (EPL) vol. 47 182–188 (1999) – 10.1209/epl/i1999-00370-1
  • Bösch, F., Chikatamarla, S. S. & Karlin, I. V. Entropic multirelaxation lattice Boltzmann models for turbulent flows. Physical Review E vol. 92 (2015) – 10.1103/physreve.92.043309
  • Karlin, I. V., Bösch, F. & Chikatamarla, S. S. Gibbs’ principle for the lattice-kinetic theory of fluid dynamics. Physical Review E vol. 90 (2014) – 10.1103/physreve.90.031302
  • Morrison, H. E. & Leder, A. Sediment transport in turbulent flows with the lattice Boltzmann method. Computers & Fluids vol. 172 340–351 (2018) – 10.1016/j.compfluid.2018.04.015
  • Feuchter, C., Wagner, O., Stief, A. & Beisswenger, T. Turbulent flow simulations around a surface-mounted finite cylinder using an entropic multi-relaxation lattice Boltzmann method. Fluid Dynamics Research vol. 51 055509 (2019) – 10.1088/1873-7005/ab3baf
  • Li, W., Chen, Y., Desbrun, M., Zheng, C. & Liu, X. Fast and scalable turbulent flow simulation with two-way coupling. ACM Transactions on Graphics vol. 39 (2020) – 10.1145/3386569.3392400
  • Zhong, C. & Komrakova, A. Liquid drop breakup in homogeneous isotropic turbulence. International Journal of Numerical Methods for Heat & Fluid Flow vol. 29 2407–2433 (2019) – 10.1108/hff-09-2018-0490
  • Wu, C.-M., Zhou, Y.-S. & Lin, C.-A. Direct numerical simulations of turbulent channel flows with mesh-refinement lattice Boltzmann methods on GPU cluster. Computers & Fluids vol. 210 104647 (2020) – 10.1016/j.compfluid.2020.104647
  • Xu, L., Tian, F.-B., Young, J. & Lai, J. C. S. A novel geometry-adaptive Cartesian grid based immersed boundary–lattice Boltzmann method for fluid–structure interactions at moderate and high Reynolds numbers. Journal of Computational Physics vol. 375 22–56 (2018) – 10.1016/j.jcp.2018.08.024
  • Zecevic, V., Kirkpatrick, M. P. & Armfield, S. W. Rectangular lattice Boltzmann method using multiple relaxation time collision operator in two and three dimensions. Computers & Fluids vol. 202 104492 (2020) – 10.1016/j.compfluid.2020.104492
  • d’Humières, D. Multiple–relaxation–time lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences vol. 360 437–451 (2002) – 10.1098/rsta.2001.0955
  • Hegele, L. A. et al. High-Reynolds-number turbulent cavity flow using the lattice Boltzmann method. Physical Review E vol. 98 (2018) – 10.1103/physreve.98.043302
  • Abe, H., Kawamura, H. & Matsuo, Y. Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow With Respect to the Reynolds Number Dependence. Journal of Fluids Engineering vol. 123 382–393 (2001) – 10.1115/1.1366680
  • Moser, R. D., Kim, J. & Mansour, N. N. Direct numerical simulation of turbulent channel flow up to Reτ=590. Physics of Fluids vol. 11 943–945 (1999) – 10.1063/1.869966
  • Cornubert, R., d’Humières, D. & Levermore, D. A Knudsen layer theory for lattice gases. Physica D: Nonlinear Phenomena vol. 47 241–259 (1991) – 10.1016/0167-2789(91)90295-k
  • Ginzbourg, I. & Adler, P. M. Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. Journal de Physique II vol. 4 191–214 (1994) – 10.1051/jp2:1994123
  • Kandhai, D. et al. Implementation Aspects of 3D Lattice-BGK: Boundaries, Accuracy, and a New Fast Relaxation Method. Journal of Computational Physics vol. 150 482–501 (1999) – 10.1006/jcph.1999.6191
  • Ladd, A. J. C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. Journal of Fluid Mechanics vol. 271 285–309 (1994) – 10.1017/s0022112094001771
  • Ziegler, D. P. Boundary conditions for lattice Boltzmann simulations. Journal of Statistical Physics vol. 71 1171–1177 (1993) – 10.1007/bf01049965
  • Peng, C., Ayala, O. M. & Wang, L.-P. A comparative study of immersed boundary method and interpolated bounce-back scheme for no-slip boundary treatment in the lattice Boltzmann method: Part I, laminar flows. Computers & Fluids vol. 192 104233 (2019) – 10.1016/j.compfluid.2019.06.032
  • Chen, G.-Q., Huang, X., Zhang, A.-M., Wang, S.-P. & Li, T. Three-dimensional simulation of a rising bubble in the presence of spherical obstacles by the immersed boundary–lattice Boltzmann method. Physics of Fluids vol. 31 (2019) – 10.1063/1.5115097
  • Suzuki, K., Kawasaki, T., Furumachi, N., Tai, Y. & Yoshino, M. A thermal immersed boundary–lattice Boltzmann method for moving-boundary flows with Dirichlet and Neumann conditions. International Journal of Heat and Mass Transfer vol. 121 1099–1117 (2018) – 10.1016/j.ijheatmasstransfer.2018.01.033
  • Wang, Z., Wei, Y. & Qian, Y. A simple direct heating thermal immersed boundary-lattice Boltzmann method for its application in incompressible flow. Computers & Mathematics with Applications vol. 80 1633–1649 (2020) – 10.1016/j.camwa.2020.08.003
  • Guo, Z., Shi, B. & Zheng, C. A coupled lattice BGK model for the Boussinesq equations. International Journal for Numerical Methods in Fluids vol. 39 325–342 (2002) – 10.1002/fld.337
  • Tao, S., Chen, B., Xiao, H. & Huang, S. Lattice Boltzmann simulation of thermal flows with complex geometry using a single-node curved boundary condition. International Journal of Thermal Sciences vol. 146 106112 (2019) – 10.1016/j.ijthermalsci.2019.106112
  • Tao, S., Xu, A., He, Q., Chen, B. & Qin, F. G. F. A curved lattice Boltzmann boundary scheme for thermal convective flows with Neumann boundary condition. International Journal of Heat and Mass Transfer vol. 150 119345 (2020) – 10.1016/j.ijheatmasstransfer.2020.119345
  • Alipour Lalami, A. & Hassani Espili, A. Two new approaches for applying Neumann boundary condition in thermal lattice Boltzmann method. Computers & Fluids vol. 198 104407 (2020) – 10.1016/j.compfluid.2019.104407
  • Kenning, D. B. R. Wall temperature patterns in nucleate boiling. International Journal of Heat and Mass Transfer vol. 35 73–86 (1992) – 10.1016/0017-9310(92)90009-h
  • Chikatamarla, S. S., Ansumali, S. & Karlin, I. V. Grad’s approximation for missing data in lattice Boltzmann simulations. Europhysics Letters (EPL) vol. 74 215–221 (2006) – 10.1209/epl/i2005-10535-x
  • Dorschner, B., Chikatamarla, S. S., Bösch, F. & Karlin, I. V. Grad’s approximation for moving and stationary walls in entropic lattice Boltzmann simulations. Journal of Computational Physics vol. 295 340–354 (2015) – 10.1016/j.jcp.2015.04.017
  • Korba, D., Wang, N. & Li, L. Accuracy of interface schemes for conjugate heat and mass transfer in the lattice Boltzmann method. International Journal of Heat and Mass Transfer vol. 156 119694 (2020) – 10.1016/j.ijheatmasstransfer.2020.119694
  • McCullough, J. W. S., Leonardi, C. R., Jones, B. D., Aminossadati, S. M. & Williams, J. R. Investigation of local and non-local lattice Boltzmann models for transient heat transfer between non-stationary, disparate media. Computers & Mathematics with Applications vol. 79 174–194 (2020) – 10.1016/j.camwa.2018.01.018
  • Mu, Y.-T., Gu, Z.-L., He, P. & Tao, W.-Q. Lattice Boltzmann method for conjugated heat and mass transfer with general interfacial conditions. Physical Review E vol. 98 (2018) – 10.1103/physreve.98.043309
  • Wang, D., Cheng, P. & Quan, X. Photothermal nanobubble nucleation on a plasmonic nanoparticle: A 3D lattice Boltzmann simulation. International Journal of Heat and Mass Transfer vol. 140 786–797 (2019) – 10.1016/j.ijheatmasstransfer.2019.05.096
  • Cahn, J. W. Critical point wetting. The Journal of Chemical Physics vol. 66 3667–3672 (1977) – 10.1063/1.434402
  • Cheng, E. et al. Wetting transitions of liquid hydrogen films. Physical Review Letters vol. 70 1854–1857 (1993) – 10.1103/physrevlett.70.1854
  • Hess, G. B., Sabatini, M. J. & Chan, M. H. W. Nonwetting of Cesium by Neon near Its Critical Point. Physical Review Letters vol. 78 1739–1742 (1997) – 10.1103/physrevlett.78.1739
  • Klier, J., Stefanyi, P. & Wyatt, A. F. G. Contact Angle of LiquidHe4on a Cs Surface. Physical Review Letters vol. 75 3709–3712 (1995) – 10.1103/physrevlett.75.3709
  • Ross, D., Rutledge, J. E. & Taborek, P. Triple Point Dewetting Transitions of Helium Mixtures on Cesium. Physical Review Letters vol. 76 2350–2353 (1996) – 10.1103/physrevlett.76.2350
  • Ross, D., Taborek, P. & Rutledge, J. E. Wetting behavior ofH2on cesium. Physical Review B vol. 58 R4274–R4276 (1998) – 10.1103/physrevb.58.r4274
  • Rutledge, J. E. & Taborek, P. Prewetting phase diagram ofHe4on cesium. Physical Review Letters vol. 69 937–940 (1992) – 10.1103/physrevlett.69.937
  • Bausch, R., Blossey, R. & Burschka, M. A. Critical nuclei for wetting and dewetting. Journal of Physics A: Mathematical and General vol. 27 1405–1406 (1994) – 10.1088/0305-4470/27/4/035
  • Bonn, D., Kellay, H. & Meunier, J. Metastable States and Nucleation near First-Order Wetting Transitions. Physical Review Letters vol. 73 3560–3563 (1994) – 10.1103/physrevlett.73.3560
  • Bonn, D., Bertrand, E., Meunier, J. & Blossey, R. Dynamics of Wetting Layer Formation. Physical Review Letters vol. 84 4661–4664 (2000) – 10.1103/physrevlett.84.4661
  • Schick, M. & Taborek, P. Anomalous nucleation at first-order wetting transitions. Physical Review B vol. 46 7312–7314 (1992) – 10.1103/physrevb.46.7312
  • Pioro, I. L., Rohsenow, W. & Doerffer, S. S. Nucleate pool-boiling heat transfer. I: review of parametric effects of boiling surface. International Journal of Heat and Mass Transfer vol. 47 5033–5044 (2004) – 10.1016/j.ijheatmasstransfer.2004.06.019
  • Wen, B., Zhou, X., He, B., Zhang, C. & Fang, H. Chemical-potential-based lattice Boltzmann method for nonideal fluids. Physical Review E vol. 95 (2017) – 10.1103/physreve.95.063305
  • Benzi, R., Biferale, L., Sbragaglia, M., Succi, S. & Toschi, F. Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle. Physical Review E vol. 74 (2006) – 10.1103/physreve.74.021509
  • Li, Q., Luo, K. H., Kang, Q. J. & Chen, Q. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Physical Review E vol. 90 (2014) – 10.1103/physreve.90.053301
  • Martys, N. S. & Chen, H. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Physical Review E vol. 53 743–750 (1996) – 10.1103/physreve.53.743
  • Kang, Q., Zhang, D. & Chen, S. Displacement of a two-dimensional immiscible droplet in a channel. Physics of Fluids vol. 14 3203–3214 (2002) – 10.1063/1.1499125
  • Raiskinmäki, P., Koponen, A., Merikoski, J. & Timonen, J. Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method. Computational Materials Science vol. 18 7–12 (2000) – 10.1016/s0927-0256(99)00095-6
  • Yang, J. et al. Effects of hysteresis window on contact angle hysteresis behaviour at large Bond number. Journal of Colloid and Interface Science vol. 566 327–337 (2020) – 10.1016/j.jcis.2020.01.042
  • Urbano, A., Tanguy, S., Huber, G. & Colin, C. Direct numerical simulation of nucleate boiling in micro-layer regime. International Journal of Heat and Mass Transfer vol. 123 1128–1137 (2018) – 10.1016/j.ijheatmasstransfer.2018.02.104
  • Watari, M. & Tsutahara, M. Two-dimensional thermal model of the finite-difference lattice Boltzmann method with high spatial isotropy. Physical Review E vol. 67 (2003) – 10.1103/physreve.67.036306
  • Gonnella, G., Lamura, A. & Sofonea, V. Lattice Boltzmann simulation of thermal nonideal fluids. Physical Review E vol. 76 (2007) – 10.1103/physreve.76.036703
  • Sofonea, V. Implementation of diffuse reflection boundary conditions in a thermal lattice Boltzmann model with flux limiters. Journal of Computational Physics vol. 228 6107–6118 (2009) – 10.1016/j.jcp.2009.05.009
  • TRAUDT, T. & SCHLECHTRIEM, S. Validation of a Lattice Boltzmann Model for Transient Cryogenic Two-Phase Flow. TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN vol. 17 321–326 (2019) – 10.2322/tastj.17.321
  • VII. On stresses in rarified gases arising from inequalities of temperature. Philosophical Transactions of the Royal Society of London vol. 170 231–256 (1879) – 10.1098/rstl.1879.0067
  • Filippova, O. & Hänel, D. Grid Refinement for Lattice-BGK Models. Journal of Computational Physics vol. 147 219–228 (1998) – 10.1006/jcph.1998.6089
  • Lagrava, D., Malaspinas, O., Latt, J. & Chopard, B. Advances in multi-domain lattice Boltzmann grid refinement. Journal of Computational Physics vol. 231 4808–4822 (2012) – 10.1016/j.jcp.2012.03.015
  • Liou, T.-M. & Wang, C.-S. Three-dimensional multidomain lattice Boltzmann grid refinement for passive scalar transport. Physical Review E vol. 98 (2018) – 10.1103/physreve.98.013306
  • Yu, D., Mei, R. & Shyy, W. A multi‐block lattice Boltzmann method for viscous fluid flows. International Journal for Numerical Methods in Fluids vol. 39 99–120 (2002) – 10.1002/fld.280
  • Baker, R. S. A Block Adaptive Mesh Refinement Algorithm for the Neutral Particle Transport Equation. Nuclear Science and Engineering vol. 141 1–12 (2002) – 10.13182/nse02-a2262
  • Guzik, S. M., Weisgraber, T. H., Colella, P. & Alder, B. J. Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement. Journal of Computational Physics vol. 259 461–487 (2014) – 10.1016/j.jcp.2013.11.037
  • Tellier, R. L., Fournier, D. & Suteau, C. Reactivity Perturbation Formulation for a Discontinuous Galerkin–Based Transport Solver and Its Use with Adaptive Mesh Refinement. Nuclear Science and Engineering vol. 167 209–220 (2011) – 10.13182/nse10-34
  • Ma, Y., Wang, Y. & Xie, M. Multiblock Adaptive Mesh Refinement for th Transport Equation Based on Lattice Boltzmann Method. Nuclear Science and Engineering vol. 193 1219–1237 (2019) – 10.1080/00295639.2019.1620052
  • Wang, Y., Xie, M. & Ma, Y. Neutron transport solution of lattice Boltzmann method and streaming-based block-structured adaptive mesh refinement. Annals of Nuclear Energy vol. 118 249–259 (2018) – 10.1016/j.anucene.2018.04.013
  • Wang, Y., Peng, X., Xie, M. & Ma, Y. High-order lattice Boltzmann framework and its adaptive mesh refinement in the neutron transport SP3 solutions. Progress in Nuclear Energy vol. 128 103449 (2020) – 10.1016/j.pnucene.2020.103449
  • Schornbaum, F. & Rüde, U. Extreme-Scale Block-Structured Adaptive Mesh Refinement. SIAM Journal on Scientific Computing vol. 40 C358–C387 (2018) – 10.1137/17m1128411
  • Bauer, M. et al. waLBerla: A block-structured high-performance framework for multiphysics simulations. Computers & Mathematics with Applications vol. 81 478–501 (2021) – 10.1016/j.camwa.2020.01.007
  • Li, L., Xu, C., Shi, C., Han, X. & Shen, W. Investigation of wake characteristics of the MEXICO wind turbine using lattice Boltzmann method. Wind Energy vol. 24 116–132 (2020) – 10.1002/we.2560
  • Zhang, C., Fakhari, A., Li, J., Luo, L.-S. & Qian, T. A comparative study of interface-conforming ALE-FE scheme and diffuse interface AMR-LB scheme for interfacial dynamics. Journal of Computational Physics vol. 395 602–619 (2019) – 10.1016/j.jcp.2019.06.048
  • Zhang, A., Du, J., Guo, Z., Wang, Q. & Xiong, S. Conservative phase-field method with a parallel and adaptive-mesh-refinement technique for interface tracking. Physical Review E vol. 100 (2019) – 10.1103/physreve.100.023305
  • Hsu, F.-S., Chang, K.-C. & Smith, M. Multi-block adaptive mesh refinement (AMR) for a lattice Boltzmann solver using GPUs. Computers & Fluids vol. 175 48–52 (2018) – 10.1016/j.compfluid.2018.01.033
  • Communication reduced multi-time-step algorithm for real-time wind simulation on GPU-based supercomputers. (2018)
  • Zhang, X., Kang, J., Guo, Z. & Han, Q. Effect of the forced flow on the permeability of dendritic networks: A study using phase-field-lattice Boltzmann method. International Journal of Heat and Mass Transfer vol. 131 196–205 (2019) – 10.1016/j.ijheatmasstransfer.2018.11.036
  • Gunstensen, A. K., Rothman, D. H., Zaleski, S. & Zanetti, G. Lattice Boltzmann model of immiscible fluids. Physical Review A vol. 43 4320–4327 (1991) – 10.1103/physreva.43.4320
  • Rothman, D. H. & Keller, J. M. Immiscible cellular-automaton fluids. Journal of Statistical Physics vol. 52 1119–1127 (1988) – 10.1007/bf01019743
  • Lishchuk, S. V., Care, C. M. & Halliday, I. Lattice Boltzmann algorithm for surface tension with greatly reduced microcurrents. Physical Review E vol. 67 (2003) – 10.1103/physreve.67.036701
  • Latva-Kokko, M. & Rothman, D. H. Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids. Physical Review E vol. 71 (2005) – 10.1103/physreve.71.056702
  • Ba, Y., Liu, H., Li, Q., Kang, Q. & Sun, J. Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio. Physical Review E vol. 94 (2016) – 10.1103/physreve.94.023310
  • Guo, Z., Zheng, C. & Shi, B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Physical Review E vol. 65 (2002) – 10.1103/physreve.65.046308
  • Halliday, I., Hollis, A. P. & Care, C. M. Lattice Boltzmann algorithm for continuum multicomponent flow. Physical Review E vol. 76 (2007) – 10.1103/physreve.76.026708
  • Reis, T. & Phillips, T. N. Lattice Boltzmann model for simulating immiscible two-phase flows. Journal of Physics A: Mathematical and Theoretical vol. 40 4033–4053 (2007) – 10.1088/1751-8113/40/14/018
  • Leclaire, S., Reggio, M. & Trépanier, J.-Y. Numerical evaluation of two recoloring operators for an immiscible two-phase flow lattice Boltzmann model. Applied Mathematical Modelling vol. 36 2237–2252 (2012) – 10.1016/j.apm.2011.08.027
  • Gupta, A. & Kumar, R. Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluidics and Nanofluidics vol. 8 799–812 (2009) – 10.1007/s10404-009-0513-7
  • Liu, H., Valocchi, A. J. & Kang, Q. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Physical Review E vol. 85 (2012) – 10.1103/physreve.85.046309
  • Wen, Z. X., Li, Q., Yu, Y. & Luo, K. H. Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows. Physical Review E vol. 100 (2019) – 10.1103/physreve.100.023301
  • Tölke, J. Lattice Boltzmann simulations of binary fluid flow through porous media. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences vol. 360 535–545 (2002) – 10.1098/rsta.2001.0944
  • HUANG, H., HUANG, J.-J., LU, X.-Y. & SUKOP, M. C. ON SIMULATIONS OF HIGH-DENSITY RATIO FLOWS USING COLOR-GRADIENT MULTIPHASE LATTICE BOLTZMANN MODELS. International Journal of Modern Physics C vol. 24 1350021 (2013) – 10.1142/s0129183113500216
  • Inamuro, T., Konishi, N. & Ogino, F. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach. Computer Physics Communications vol. 129 32–45 (2000) – 10.1016/s0010-4655(00)00090-4
  • Kalarakis, A. N., Burganos, V. N. & Payatakes, A. C. Galilean-invariant lattice-Boltzmann simulation of liquid-vapor interface dynamics. Physical Review E vol. 65 (2002) – 10.1103/physreve.65.056702
  • Lee, Y. K. & Ahn, K. H. Particle dynamics at fluid interfaces studied by the color gradient lattice Boltzmann method coupled with the smoothed profile method. Physical Review E vol. 101 (2020) – 10.1103/physreve.101.053302
  • Shan, X. & Chen, H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Physical Review E vol. 49 2941–2948 (1994) – 10.1103/physreve.49.2941
  • Chin, J. Lattice Boltzmann simulation of the flow of binary immiscible fluids with different viscosities using the Shan-Chen microscopic interaction model. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences vol. 360 547–558 (2002) – 10.1098/rsta.2001.0953
  • Kang, Q., Zhang, D. & Chen, S. Immiscible displacement in a channel: simulations of fingering in two dimensions. Advances in Water Resources vol. 27 13–22 (2004) – 10.1016/j.advwatres.2003.10.002
  • Zhang, R., He, X., Doolen, G. & Chen, S. Surface tension effects on two-dimensional two-phase Kelvin–Helmholtz instabilities. Advances in Water Resources vol. 24 461–478 (2001) – 10.1016/s0309-1708(00)00067-1
  • Yuan, P. & Schaefer, L. Equations of state in a lattice Boltzmann model. Physics of Fluids vol. 18 (2006) – 10.1063/1.2187070
  • Kwok, P. C. K. Green’s Function Method in Lattice Dynamics. Solid State Physics 213–303 (1968) doi:10.1016/s0081-1947(08)60219-2 – 10.1016/s0081-1947(08)60219-2
  • Sun, J., Gong, J. & Li, G. A lattice Boltzmann model for solidification of water droplet on cold flat plate. International Journal of Refrigeration vol. 59 53–64 (2015) – 10.1016/j.ijrefrig.2015.07.003
  • Zhao-Li, G., Chu-Guang, Z. & Bao-Chang, S. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chinese Physics vol. 11 366–374 (2002) – 10.1088/1009-1963/11/4/310
  • Li, Q. & Luo, K. H. Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows. Physical Review E vol. 88 (2013) – 10.1103/physreve.88.053307
  • Zhou, P., Liu, W. & Liu, Z. Lattice Boltzmann simulation of nucleate boiling in micro-pillar structured surface. International Journal of Heat and Mass Transfer vol. 131 1–10 (2019) – 10.1016/j.ijheatmasstransfer.2018.11.038
  • Zhou, P., Liu, Z., Liu, W. & Duan, X. LBM simulates the effect of sole nucleate site geometry on pool boiling. Applied Thermal Engineering vol. 160 114027 (2019) – 10.1016/j.applthermaleng.2019.114027
  • Fang, W.-Z., Chen, L., Kang, Q.-J. & Tao, W.-Q. Lattice Boltzmann modeling of pool boiling with large liquid-gas density ratio. International Journal of Thermal Sciences vol. 114 172–183 (2017) – 10.1016/j.ijthermalsci.2016.12.017
  • Gong, S. & Cheng, P. Direct numerical simulations of pool boiling curves including heater’s thermal responses and the effect of vapor phase’s thermal conductivity. International Communications in Heat and Mass Transfer vol. 87 61–71 (2017) – 10.1016/j.icheatmasstransfer.2017.06.023
  • Ma, X., Cheng, P. & Quan, X. Simulations of saturated boiling heat transfer on bio-inspired two-phase heat sinks by a phase-change lattice Boltzmann method. International Journal of Heat and Mass Transfer vol. 127 1013–1024 (2018) – 10.1016/j.ijheatmasstransfer.2018.07.082
  • Berghout, P. & Van den Akker, H. E. A. Simulating drop formation at an aperture by means of a Multi-Component Pseudo-Potential Lattice Boltzmann model. International Journal of Heat and Fluid Flow vol. 75 153–164 (2019) – 10.1016/j.ijheatfluidflow.2019.01.001
  • Ezzatneshan, E. & Vaseghnia, H. Simulation of collapsing cavitation bubbles in various liquids by lattice Boltzmann model coupled with the Redlich-Kwong-Soave equation of state. Physical Review E vol. 102 (2020) – 10.1103/physreve.102.053309
  • Falcucci, G., Jannelli, E., Ubertini, S. & Succi, S. Direct numerical evidence of stress-induced cavitation. Journal of Fluid Mechanics vol. 728 362–375 (2013) – 10.1017/jfm.2013.271
  • Liu, Y. & Peng, Y. Study on the Collapse Process of Cavitation Bubbles Near the Concave Wall by Lattice Boltzmann Method Pseudo-Potential Model. Energies vol. 13 4398 (2020) – 10.3390/en13174398
  • Peng, H., Zhang, J., He, X. & Wang, Y. Thermal pseudo-potential lattice Boltzmann method for simulating cavitation bubbles collapse near a rigid boundary. Computers & Fluids vol. 217 104817 (2021) – 10.1016/j.compfluid.2020.104817
  • Hu, A., Uddin, R. & Liu, D. Discrete methods of the energy equations in the pseudo-potential lattice Boltzmann model based simulations. Computers & Fluids vol. 179 645–654 (2019) – 10.1016/j.compfluid.2018.12.005
  • Barakos, G., Mitsoulis, E. & Assimacopoulos, D. Natural convection flow in a square cavity revisited: Laminar and turbulent models with wall functions. International Journal for Numerical Methods in Fluids vol. 18 695–719 (1994) – 10.1002/fld.1650180705
  • Reyhanian, E., Dorschner, B. & Karlin, I. Kinetic Simulations of Compressible Non-Ideal Fluids: From Supercritical Flows to Phase-Change and Exotic Behavior. Computation vol. 9 13 (2021) – 10.3390/computation9020013
  • Grove, J. W. Some comments on thermodynamic consistency for equilibrium mixture equations of state. Computers & Mathematics with Applications vol. 78 582–597 (2019) – 10.1016/j.camwa.2018.03.012
  • Menikoff, R. & Plohr, B. J. The Riemann problem for fluid flow of real materials. Reviews of Modern Physics vol. 61 75–130 (1989) – 10.1103/revmodphys.61.75
  • Orlandini, E., Swift, M. R. & Yeomans, J. M. A Lattice Boltzmann Model of Binary-Fluid Mixtures. Europhysics Letters (EPL) vol. 32 463–468 (1995) – 10.1209/0295-5075/32/6/001
  • Swift, M. R., Osborn, W. R. & Yeomans, J. M. Lattice Boltzmann Simulation of Nonideal Fluids. Physical Review Letters vol. 75 830–833 (1995) – 10.1103/physrevlett.75.830
  • Swift, M. R., Orlandini, E., Osborn, W. R. & Yeomans, J. M. Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Physical Review E vol. 54 5041–5052 (1996) – 10.1103/physreve.54.5041
  • Molecular Theory of Capillarity (1983)
  • Zheng, H. W., Shu, C. & Chew, Y. T. Lattice Boltzmann interface capturing method for incompressible flows. Physical Review E vol. 72 (2005) – 10.1103/physreve.72.056705
  • Zheng, H. W., Shu, C. & Chew, Y. T. A lattice Boltzmann model for multiphase flows with large density ratio. Journal of Computational Physics vol. 218 353–371 (2006) – 10.1016/j.jcp.2006.02.015
  • Frisch, U., Hasslacher, B. & Pomeau, Y. Lattice-Gas Automata for the Navier-Stokes Equation. Physical Review Letters vol. 56 1505–1508 (1986) – 10.1103/physrevlett.56.1505
  • Wen, B., Qin, Z., Zhang, C. & Fang, H. Thermodynamic-consistent lattice Boltzmann model for nonideal fluids. EPL (Europhysics Letters) vol. 112 44002 (2015) – 10.1209/0295-5075/112/44002
  • Inamuro, T., Ogata, T., Tajima, S. & Konishi, N. A lattice Boltzmann method for incompressible two-phase flows with large density differences. Journal of Computational Physics vol. 198 628–644 (2004) – 10.1016/j.jcp.2004.01.019
  • Wöhrwag, M., Semprebon, C., Mazloomi Moqaddam, A., Karlin, I. & Kusumaatmaja, H. Ternary Free-Energy Entropic Lattice Boltzmann Model with a High Density Ratio. Physical Review Letters vol. 120 (2018) – 10.1103/physrevlett.120.234501
  • Bala, N., Pepona, M., Karlin, I., Kusumaatmaja, H. & Semprebon, C. Wetting boundaries for a ternary high-density-ratio lattice Boltzmann method. Physical Review E vol. 100 (2019) – 10.1103/physreve.100.013308
  • Bao, J. & Schaefer, L. Lattice Boltzmann equation model for multi-component multi-phase flow with high density ratios. Applied Mathematical Modelling vol. 37 1860–1871 (2013) – 10.1016/j.apm.2012.04.048
  • Liang, H., Shi, B. C. & Chai, Z. H. Lattice Boltzmann modeling of three-phase incompressible flows. Physical Review E vol. 93 (2016) – 10.1103/physreve.93.013308
  • Semprebon, C., Krüger, T. & Kusumaatmaja, H. Ternary free-energy lattice Boltzmann model with tunable surface tensions and contact angles. Physical Review E vol. 93 (2016) – 10.1103/physreve.93.033305
  • Boyer, F. & Lapuerta, C. Study of a three component Cahn-Hilliard flow model. ESAIM: Mathematical Modelling and Numerical Analysis vol. 40 653–687 (2006) – 10.1051/m2an:2006028
  • Haghani Hassan Abadi, R., Rahimian, M. H. & Fakhari, A. Conservative phase-field lattice-Boltzmann model for ternary fluids. Journal of Computational Physics vol. 374 668–691 (2018) – 10.1016/j.jcp.2018.07.045
  • Allen, S. M. & Cahn, J. W. Mechanisms of phase transformations within the miscibility gap of Fe-rich Fe-Al alloys. Acta Metallurgica vol. 24 425–437 (1976) – 10.1016/0001-6160(76)90063-8
  • Cahn, J. W. & Hilliard, J. E. Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics vol. 28 258–267 (1958) – 10.1063/1.1744102
  • Bornemann, F. Accuracy and Stability of Computing High-order Derivatives of Analytic Functions by Cauchy Integrals. Foundations of Computational Mathematics vol. 11 1–63 (2010) – 10.1007/s10208-010-9075-z
  • Miel, G. & Mooney, R. On the condition number of Lagrangian numerical differentiation. Applied Mathematics and Computation vol. 16 241–252 (1985) – 10.1016/0096-3003(85)90031-1
  • Chiu, P.-H. & Lin, Y.-T. A conservative phase field method for solving incompressible two-phase flows. Journal of Computational Physics vol. 230 185–204 (2011) – 10.1016/j.jcp.2010.09.021
  • Geier, M., Fakhari, A. & Lee, T. Conservative phase-field lattice Boltzmann model for interface tracking equation. Physical Review E vol. 91 (2015) – 10.1103/physreve.91.063309
  • Dai, S. & Du, Q. Computational studies of coarsening rates for the Cahn–Hilliard equation with phase-dependent diffusion mobility. Journal of Computational Physics vol. 310 85–108 (2016) – 10.1016/j.jcp.2016.01.018
  • Dupuy, P. M., Fernandino, M., Jakobsen, H. A. & Svendsen, H. F. Using Cahn–Hilliard mobility to simulate coalescence dynamics. Computers & Mathematics with Applications vol. 59 2246–2259 (2010) – 10.1016/j.camwa.2009.08.050
  • Jacqmin, D. Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling. Journal of Computational Physics vol. 155 96–127 (1999) – 10.1006/jcph.1999.6332
  • Zhu, J., Chen, L.-Q., Shen, J. & Tikare, V. Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: Application of a semi-implicit Fourier spectral method. Physical Review E vol. 60 3564–3572 (1999) – 10.1103/physreve.60.3564
  • Fakhari, A., Mitchell, T., Leonardi, C. & Bolster, D. Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios. Physical Review E vol. 96 (2017) – 10.1103/physreve.96.053301
  • Sadeghi, R. & Shadloo, M. S. Three-dimensional numerical investigation of film boiling by the lattice Boltzmann method. Numerical Heat Transfer, Part A: Applications vol. 71 560–574 (2017) – 10.1080/10407782.2016.1277936
  • Klimenko, V. V. Film boiling on a horizontal plate — new correlation. International Journal of Heat and Mass Transfer vol. 24 69–79 (1981) – 10.1016/0017-9310(81)90094-6
  • Ma, C., Wu, J. & Zhang, T. A high order spectral difference-based phase field lattice Boltzmann method for incompressible two-phase flows. Physics of Fluids vol. 32 (2020) – 10.1063/5.0033204
  • Kalantarpour, R., Ebadi, A., Hosseinalipour, S. M. & Liang, H. Three-component phase-field Lattice Boltzmann method with high density ratio and ability to simulate total spreading states. Computers & Fluids vol. 204 104480 (2020) – 10.1016/j.compfluid.2020.104480
  • Sitompul, Y. P., Aoki, T. & Takaki, T. Simulation of turbulent bubbly pipe flow with high density ratio and high reynolds number by using the lattice boltzmann method and a multi-phase field model. International Journal of Multiphase Flow vol. 134 103505 (2021) – 10.1016/j.ijmultiphaseflow.2020.103505
  • Alpak, F. O., Zacharoudiou, I., Berg, S., Dietderich, J. & Saxena, N. Direct simulation of pore-scale two-phase visco-capillary flow on large digital rock images using a phase-field lattice Boltzmann method on general-purpose graphics processing units. Computational Geosciences vol. 23 849–880 (2019) – 10.1007/s10596-019-9818-0
  • Sakane, S. & Takaki, T. Phase-field lattice Boltzmann method with two-relaxation-time model for dendrite growth of a binary alloy with melt convection. Computational Materials Science vol. 186 110070 (2021) – 10.1016/j.commatsci.2020.110070
  • Meng, S., Zhang, A., Guo, Z. & Wang, Q. Phase-field-lattice Boltzmann simulation of dendrite motion using an immersed boundary method. Computational Materials Science vol. 184 109784 (2020) – 10.1016/j.commatsci.2020.109784
  • Ansumali, S. & V. Karlin, I. Kinetic boundary conditions in the lattice Boltzmann method. Physical Review E vol. 66 (2002) – 10.1103/physreve.66.026311
  • Higuera, F. J. & Jiménez, J. Boltzmann Approach to Lattice Gas Simulations. Europhysics Letters (EPL) vol. 9 663–668 (1989) – 10.1209/0295-5075/9/7/009
  • Yoshida, H. & Nagaoka, M. Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation. Journal of Computational Physics vol. 229 7774–7795 (2010) – 10.1016/j.jcp.2010.06.037
  • Chen, Z., Shu, C. & Tan, D. Highly accurate simplified lattice Boltzmann method. Physics of Fluids vol. 30 (2018) – 10.1063/1.5050185
  • Chen, Z., Shu, C. & Tan, D. Three-dimensional simplified and unconditionally stable lattice Boltzmann method for incompressible isothermal and thermal flows. Physics of Fluids vol. 29 (2017) – 10.1063/1.4983339
  • Chen, Z., Shu, C. & Tan, D. A Truly Second-Order and Unconditionally Stable Thermal Lattice Boltzmann Method. Applied Sciences vol. 7 277 (2017) – 10.3390/app7030277
  • Chen, Z., Shu, C. & Tan, D. Immersed boundary-simplified lattice Boltzmann method for incompressible viscous flows. Physics of Fluids vol. 30 (2018) – 10.1063/1.5028353
  • Chen, Z., Shu, C., Tan, D. & Wu, C. On improvements of simplified and highly stable lattice Boltzmann method: Formulations, boundary treatment, and stability analysis. International Journal for Numerical Methods in Fluids vol. 87 161–179 (2018) – 10.1002/fld.4485
  • Chen, Z. & Shu, C. On numerical diffusion of simplified lattice Boltzmann method. International Journal for Numerical Methods in Fluids vol. 92 1198–1211 (2020) – 10.1002/fld.4823
  • Chen, Z. & Shu, C. Simplified lattice Boltzmann method for non‐Newtonian power‐law fluid flows. International Journal for Numerical Methods in Fluids vol. 92 38–54 (2019) – 10.1002/fld.4771
  • Chen, Z., Shu, C., Yang, L. M., Zhao, X. & Liu, N. Y. Immersed boundary–simplified thermal lattice Boltzmann method for incompressible thermal flows. Physics of Fluids vol. 32 (2020) – 10.1063/1.5138711
  • Ma, Y. & Yang, Z. Simplified and highly stable thermal Lattice Boltzmann method simulation of hybrid nanofluid thermal convection at high Rayleigh numbers. Physics of Fluids vol. 32 (2020) – 10.1063/1.5139092
  • Li, Q.-Z. et al. Unified simplified multiphase lattice Boltzmann method for ferrofluid flows and its application. Physics of Fluids vol. 32 (2020) – 10.1063/5.0021463
  • Li, X. et al. Numerical investigation of magnetic multiphase flows by the fractional-step-based multiphase lattice Boltzmann method. Physics of Fluids vol. 32 (2020) – 10.1063/5.0020903
  • Khan, A. et al. Dynamic study of ferrodroplet and bubbles merging in ferrofluid by a simplified multiphase lattice Boltzmann method. Journal of Magnetism and Magnetic Materials vol. 495 165869 (2020) – 10.1016/j.jmmm.2019.165869
  • Wang, Y., Zhong, C., Cao, J., Zhuo, C. & Liu, S. A simplified finite volume lattice Boltzmann method for simulations of fluid flows from laminar to turbulent regime, Part II: Extension towards turbulent flow simulation. Computers & Mathematics with Applications vol. 79 2133–2152 (2020) – 10.1016/j.camwa.2019.10.014
  • Wang, Y., Zhong, C., Cao, J., Zhuo, C. & Liu, S. A simplified finite volume lattice Boltzmann method for simulations of fluid flows from laminar to turbulent regime, Part I: Numerical framework and its application to laminar flow simulation. Computers & Mathematics with Applications vol. 79 1590–1618 (2020) – 10.1016/j.camwa.2019.09.017
  • Izumi, Y., Iwamoto, A., Tatsumi, Y., Takeda, S. & Nishijima, S. Lattice Boltzmann Method Analyzing Helium Bubbles Motion in Liquid Helium. IEEE Transactions on Appiled Superconductivity vol. 14 1326–1329 (2004) – 10.1109/tasc.2004.830568
  • Imre, A. R., Mayer, G., Házi, G., Rozas, R. & Kraska, T. Estimation of the liquid-vapor spinodal from interfacial properties obtained from molecular dynamics and lattice Boltzmann simulations. The Journal of Chemical Physics vol. 128 (2008) – 10.1063/1.2837805
  • NIST, NIST Chemistry WebBook (2018)
  • Or, D. & Tuller, M. Cavitation during desaturation of porous media under tension. Water Resources Research vol. 38 (2002) – 10.1029/2001wr000282
  • Plesset, M. S. & Prosperetti, A. Bubble Dynamics and Cavitation. Annual Review of Fluid Mechanics vol. 9 145–185 (1977) – 10.1146/annurev.fl.09.010177.001045
  • New method of incorporating a body force term into the lattice Boltzmann equation. (2004)
  • Watari, M. & Tsutahara, M. Supersonic flow simulations by a three-dimensional multispeed thermal model of the finite difference lattice Boltzmann method. Physica A: Statistical Mechanics and its Applications vol. 364 129–144 (2006) – 10.1016/j.physa.2005.06.103
  • Peng, Y., Wang, B. & Mao, Y. Study on Force Schemes in Pseudopotential Lattice Boltzmann Model for Two-Phase Flows. Mathematical Problems in Engineering vol. 2018 1–9 (2018) – 10.1155/2018/6496379
  • Dular, M. & Petkovšek, M. Cavitation erosion in liquid nitrogen. Wear vols 400–401 111–118 (2018) – 10.1016/j.wear.2018.01.003
  • The Properties of Gases and Liquids (2001)
  • Cavitation and Tension in Liquids (1987)
  • Li, X., Zhao, J. & Cheng, P. A lattice Boltzmann model for condensation and freezing of dry saturated vapor about a cryogenic spot on an inclined hydrophobic surface. International Journal of Heat and Mass Transfer vol. 114 628–639 (2017) – 10.1016/j.ijheatmasstransfer.2017.06.027
  • Zhao, J., Li, X. & Cheng, P. Lattice Boltzmann simulation of a droplet impact and freezing on cold surfaces. International Communications in Heat and Mass Transfer vol. 87 175–182 (2017) – 10.1016/j.icheatmasstransfer.2017.07.006
  • Friedman, S. R., Khalil, M. & Taborek, P. Wetting Transition in Water. Physical Review Letters vol. 111 (2013) – 10.1103/physrevlett.111.226101
  • Cheng, E., Cole, M. W., Saam, W. F. & Treiner, J. Helium prewetting and nonwetting on weak-binding substrates. Physical Review Letters vol. 67 1007–1010 (1991) – 10.1103/physrevlett.67.1007
  • Frank, M., Papanikolaou, M., Drikakis, D. & Salonitis, K. Heat transfer across a fractal surface. The Journal of Chemical Physics vol. 151 (2019) – 10.1063/1.5115585
  • He, Q. et al. A unified lattice Boltzmann model for immiscible and miscible ternary fluids. Computers & Mathematics with Applications vol. 80 2830–2859 (2020) – 10.1016/j.camwa.2020.10.008
  • Vienne, L., Marié, S. & Grasso, F. Lattice Boltzmann method for miscible gases: A forcing-term approach. Physical Review E vol. 100 (2019) – 10.1103/physreve.100.023309
  • Kostin, I., Marion, M., Texier-Picard, R. & Volpert, V. A. Modelling of Miscible Liquids with the Korteweg Stress. ESAIM: Mathematical Modelling and Numerical Analysis vol. 37 741–753 (2003) – 10.1051/m2an:2003042
  • Sugii, Y., Okamoto, K., Hibara, A., Tokeshi, M. & Kitamori, T. Effect of korteweg stress in miscible liquid two-layer flow in a microfluidic device. Journal of Visualization vol. 8 117–124 (2005) – 10.1007/bf03181654
  • Rahbarimanesh, S., Brinkerhoff, J. & Huang, J. Development and validation of a homogeneous flow model for simulating cavitation in cryogenic fluids. Applied Mathematical Modelling vol. 56 584–611 (2018) – 10.1016/j.apm.2017.12.004
  • A numerical study on the effects of cavitation number on cavitating mixing layer of liquefied natural gas (LNG) behind a flat plate splitter. (2018)
  • Wang, C.-S. & Liou, T.-M. Lattice Boltzmann simulation of turbulent flow in rotating rectangular ducts with various aspect ratios. Physical Review Fluids vol. 5 (2020) – 10.1103/physrevfluids.5.124608
  • Wang, C.-S. & Brinkerhoff, J. Advances in mathematical modeling of hydrogen adsorption and desorption in metal hydride beds with lattice Boltzmann method. International Journal of Hydrogen Energy vol. 45 32179–32195 (2020) – 10.1016/j.ijhydene.2020.08.171
  • Wang, C.-S., Shen, P.-Y. & Liou, T.-M. A consistent thermal lattice Boltzmann method for heat transfer in arbitrary combinations of solid, fluid, and porous media. Computer Methods in Applied Mechanics and Engineering vol. 368 113200 (2020) – 10.1016/j.cma.2020.113200
  • Liou, T.-M., Wei, T.-C. & Wang, C.-S. Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method. Journal of Thermal Analysis and Calorimetry vol. 135 751–762 (2018) – 10.1007/s10973-018-7299-3