Authors

Daniel Mayer, Josef Hrusak, Milan Stork

Abstract

This paper deals with generalization of the Brayton–Moser network decomposition and related structural properties to a relatively large class of finite dimensional strictly causal systems, which can be described in the state-space representation form. The resulting energy-metric function is defined for dissipative systems and is induced by the output signal dissipation power. It is demonstrated that such a power-oriented approach determines both, the structure of a system representation as well as the corresponding system state space topology. A special form of physically correct internal structure of an equivalent state space representation has been derived as a natural consequence of strict causality, the state-space energy conservation, dissipativity assumption and the state minimality requirement.

Keywords

State-space energy; Dissipation power; Decomposition of system representation; Active power; Dissipative chaos ; Reactive power; Conservative chaos; Bryton–Moser equations; New paradigm; Port–Hamiltonian systems; 93 System theory and control

Citation

  • Journal: Computing
  • Year: 2013
  • Volume: 95
  • Issue: S1
  • Pages: 723–749
  • Publisher: Springer Science and Business Media LLC
  • DOI: 10.1007/s00607-012-0280-2

BibTeX

@article{Mayer_2013,
  title={{On state-space energy based generalization of Brayton–Moser topological approach to electrical network decomposition}},
  volume={95},
  ISSN={1436-5057},
  DOI={10.1007/s00607-012-0280-2},
  number={S1},
  journal={Computing},
  publisher={Springer Science and Business Media LLC},
  author={Mayer, Daniel and Hrusak, Josef and Stork, Milan},
  year={2013},
  pages={723--749}
}

Download the bib file

References

  • AGJ MacFarlane. MacFarlane AGJ (1970) Dynamical system models. George G. Harrap & Co. Ltd., London (1970)
  • RE Kalman. Kalman RE (1963) Mathematical description of linear dynamical systems. SIAM J Control 1:152–192 (1963)
  • Mayer D (1970) The state variable method of electrical network analysis. ACTA TECHNICA CSAV 6:761–789
  • Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quarterly of Applied Mathematics vol. 22 1–33 (1964) – 10.1090/qam/169746
  • Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. II. Quarterly of Applied Mathematics vol. 22 81–104 (1964) – 10.1090/qam/169747
  • Massimo, F. M., Kwatny, H. G. & Bahar, L. Y. Derivation of the Brayton–Moser equations from a topological mixed potential function. Journal of the Franklin Institute vol. 310 259–269 (1980) – 10.1016/0016-0032(80)90045-9
  • Hrusak J (1969) Anwendung der Äquivalenz bei Stabilitätsprüfung, Tagung ü. die Regelungs-theorie, Mathematisches Forschungsinstitut, Oberwolfach, Universitaet Freiburg, West. Germany
  • Hrusak J (1971) The isometric transformations method and some of its applications. PhD Thesis, CTU Prague, pp. 1–137 (In Czech)
  • Hrusak J, Stork M, Mayer D (2011) Generalized Tellegen‘s principle and state space energy based causal systems description. In: Advances in Energy Research: Distributed Generations Systems Integrating Renewable Energy Resources, Part I, Basic theory and advanced approaches, Chap. 4. NOVA Science Publishers, USA, pp 95–139
  • Mayer D, Hrusak J (2003) On correctness and asymptotic stability in causal system theory. In: Proceedings of 7th World Multiconference on Systemics, Cybernetics and Informatics, Vol. XIII, Orlando, USA, pp. 355–360
  • Jeltsema, D. & Scherpen, J. M. A. A power-based description of standard mechanical systems. Systems & Control Letters vol. 56 349–356 (2007) – 10.1016/j.sysconle.2006.10.015
  • Tabuada, P. & Pappas, G. J. Abstractions of Hamiltonian control systems. Automatica vol. 39 2025–2033 (2003) – 10.1016/s0005-1098(03)00235-8
  • Jeltsema, D., Ortega, R. & Scherpen, J. M. A. On passivity and power-balance inequalities of nonlinear rlc circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications vol. 50 1174–1179 (2003) – 10.1109/tcsi.2003.816332
  • J Hrusak. Hrusak J, Stork M, Mayer D (2005) Dissipation normal form, conservativity, instability and chaotic behavior of continuous-time strictly causal systems. WSEAS Trans Syst 4(7):915–920 (2005)
  • M Stork. Stork M, Hrusak J, Mayer D (2005) Continuous and digital nonlinear systems, chaos and strange behavior detection, simulations and experiments. WSEAS Trans Circ Syst 4(4):395–405 (2005)
  • J Hrusak. Hrusak J, Stork M, Mayer D (2008) Dissipation normal forms and further applications of Lyapunov–Tellegen’s principle, 12th WSEAS International Conference on Systems. WSEAS Press, Heraclion (2008)
  • Stork M, Hrusak J, Mayer D (2010) Nonlinearly Coupled Oscillators and State Space Energy Approach. In: 14th WSEAS International Conference on SYSTEMS (Part of the 14th WSEAS CSCC Multiconference), Corfu Island, Greece
  • Hoover, W. G. Remark on ‘“Some simple chaotic flows”’. Physical Review E vol. 51 759–760 (1995) – 10.1103/physreve.51.759
  • Posch, H. A., Hoover, W. G. & Vesely, F. J. Canonical dynamics of the Nosé oscillator: Stability, order, and chaos. Physical Review A vol. 33 4253–4265 (1986) – 10.1103/physreva.33.4253
  • Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics vol. 81 511–519 (1984) – 10.1063/1.447334
  • Hoover, W. G. Reversible mechanics and time’s arrow. Physical Review A vol. 37 252–257 (1988) – 10.1103/physreva.37.252
  • Ezra, G. S. Reversible measure-preserving integrators for non-Hamiltonian systems. The Journal of Chemical Physics vol. 125 (2006) – 10.1063/1.2215608