Authors

Yan Li

Abstract

This paper presents a novel theoretical framework in the Hamiltonian theory of nonlinear surface gravity waves. The envelope of surface elevation and the velocity potential on the free water surface are introduced in the framework, which are shown to be a new pair of canonical variables. Using the two envelopes as the main unknowns, coupled envelope evolution equations (CEEEs) are derived based on a perturbation expansion. Similar to the high-order spectral method, the CEEEs can be derived up to arbitrary order in wave steepness. In contrast, they have a temporal scale as slow as the rate of change of a wave spectrum and allow for the wave fields prescribed on a computational (spatial) domain with a much larger size and with spacing longer than the characteristic wavelength at no expense of accuracy and numerical efficiency. The energy balance equation is derived based on the CEEEs. The nonlinear terms in the CEEEs are in a form of the separation of wave harmonics, due to which an individual term is shown to have clear physical meanings in terms of whether or not it is able to force free waves that obey the dispersion relation. Both the nonlinear terms that can only lead to the forcing of bound waves and those that are capable of forcing free waves are demonstrated, in the case of the latter through the analysis of the quartet and quintet resonant interactions of linear waves. The relations between the CEEEs and two other existing theoretical frameworks are established, including the theory for a train of Stokes waves up to second order in wave steepness (Fenton,ASCE J. Waterway Port Coastal Ocean Engng, vol. 111, issue 2, 1985, pp. 216–234) and a semi-analytical framework for three-dimensional weakly nonlinear surface waves with arbitrary bandwidth and large directional spreading by Li & Li (Phys. Fluids, vol. 33, issue 7, 2021, 076609).

Citation

  • Journal: Journal of Fluid Mechanics
  • Year: 2023
  • Volume: 960
  • Issue:
  • Pages:
  • Publisher: Cambridge University Press (CUP)
  • DOI: 10.1017/jfm.2023.205

BibTeX

@article{Li_2023,
  title={{On coupled envelope evolution equations in the Hamiltonian theory of nonlinear surface gravity waves}},
  volume={960},
  ISSN={1469-7645},
  DOI={10.1017/jfm.2023.205},
  journal={Journal of Fluid Mechanics},
  publisher={Cambridge University Press (CUP)},
  author={Li, Yan},
  year={2023}
}

Download the bib file

References

  • Sullivan, P. P. & McWilliams, J. C. Dynamics of Winds and Currents Coupled to Surface Waves. Annu. Rev. Fluid Mech. 42, 19–42 (2010) – 10.1146/annurev-fluid-121108-145541
  • Engsig-Karup, A. P., Bingham, H. B. & Lindberg, O. An efficient flexible-order model for 3D nonlinear water waves. Journal of Computational Physics 228, 2100–2118 (2009) – 10.1016/j.jcp.2008.11.028
  • Suzuki, N. & Fox‐Kemper, B. Understanding Stokes forces in the wave‐averaged equations. JGR Oceans 121, 3579–3596 (2016) – 10.1002/2015jc011566
  • D’Asaro, E. A. Turbulence in the Upper-Ocean Mixed Layer. Annu. Rev. Mar. Sci. 6, 101–115 (2014) – 10.1146/annurev-marine-010213-135138
  • Phillips, O. M. On the dynamics of unsteady gravity waves of finite amplitude Part 1. The elementary interactions. J. Fluid Mech. 9, 193–217 (1960) – 10.1017/s0022112060001043
  • Benilov, A. Y. On the turbulence generated by the potential surface waves. J. Geophys. Res. 117, (2012) – 10.1029/2012jc007948
  • Dalzell, J. F. A note on finite depth second-order wave–wave interactions. Applied Ocean Research 21, 105–111 (1999) – 10.1016/s0141-1187(99)00008-5
  • Janssen, T. T. & Herbers, T. H. C. Nonlinear Wave Statistics in a Focal Zone. Journal of Physical Oceanography 39, 1948–1964 (2009) – 10.1175/2009jpo4124.1
  • Trulsen, K. & Dysthe, K. B. A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion 24, 281–289 (1996) – 10.1016/s0165-2125(96)00020-0
  • Rasmussen, J. H. & Stiassnie, M. Discretization of Zakharov’s equation. European Journal of Mechanics - B/Fluids 18, 353–364 (1999) – 10.1016/s0997-7546(99)80033-8
  • Bihs, REEF3D: FNPF–A flexible fully nonlinear potential flow solver. Trans. ASME J. Offshore Mech. Arctic Engng (2020)
  • Atkinson, An Introduction to Numerical Analysis (2008)
  • AGNON, Y., MADSEN, P. A. & SCHÄFFER, H. A. A new approach to high-order Boussinesq models. J. Fluid Mech. 399, 319–333 (1999) – 10.1017/s0022112099006394
  • Li, Y. & Li, X. Weakly nonlinear broadband and multi-directional surface waves on an arbitrary depth: A framework, Stokes drift, and particle trajectories. Physics of Fluids 33, (2021) – 10.1063/5.0057215
  • Fenton, J. D. A Fifth‐Order Stokes Theory for Steady Waves. J. Waterway, Port, Coastal, Ocean Eng. 111, 216–234 (1985) – 10.1061/(asce)0733-950x(1985)111:2(216)
  • McLean, J. W. Instabilities of finite-amplitude gravity waves on water of finite depth. J. Fluid Mech. 114, 331 (1982) – 10.1017/s0022112082000184
  • Janssen, P. A. E. M. & Onorato, M. The Intermediate Water Depth Limit of the Zakharov Equation and Consequences for Wave Prediction. Journal of Physical Oceanography 37, 2389–2400 (2007) – 10.1175/jpo3128.1
  • Dommermuth, D. G. & Yue, D. K. P. A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech. 184, 267–288 (1987) – 10.1017/s002211208700288x
  • Annenkov, S. Y. & Shrira, V. I. “Fast” Nonlinear Evolution in Wave Turbulence. Phys. Rev. Lett. 102, (2009) – 10.1103/physrevlett.102.024502
  • Dyachenko, A. I., Kachulin, D. I. & Zakharov, V. E. Super compact equation for water waves. J. Fluid Mech. 828, 661–679 (2017) – 10.1017/jfm.2017.529
  • Li, S., Rival, D. E. & Wu, X. Sound source and pseudo-sound in the near field of a circular cylinder in subsonic conditions. J. Fluid Mech. 919, (2021) – 10.1017/jfm.2021.404
  • Mei, Theory and Applications of Ocean Surface Waves: Nonlinear Aspects (2005)
  • Dyachenko, A. I. & Zakharov, V. E. Compact equation for gravity waves on deep water. Jetp Lett. 93, 701–705 (2011) – 10.1134/s0021364011120058
  • Crawford, D. R., Saffman, P. G. & Yuen, H. C. Evolution of a random inhomogeneous field of nonlinear deep-water gravity waves. Wave Motion 2, 1–16 (1980) – 10.1016/0165-2125(80)90029-3
  • Ducrozet, G., Bonnefoy, F., Le Touzé, D. & Ferrant, P. HOS-ocean: Open-source solver for nonlinear waves in open ocean based on High-Order Spectral method. Computer Physics Communications 203, 245–254 (2016) – 10.1016/j.cpc.2016.02.017
  • Shrira, V. I., Badulin, S. I. & Kharif, C. A model of water wave ‘horse-shoe’ patterns. J. Fluid Mech. 318, 375 (1996) – 10.1017/s0022112096007161
  • McWILLIAMS, J. C., RESTREPO, J. M. & LANE, E. M. An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech. 511, 135–178 (2004) – 10.1017/s0022112004009358
  • Annenkov, S. Y. & Shrira, V. I. Direct Numerical Simulation of Downshift and Inverse Cascade for Water Wave Turbulence. Phys. Rev. Lett. 96, (2006) – 10.1103/physrevlett.96.204501
  • Zakharov, V. E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J Appl Mech Tech Phys 9, 190–194 (1972) – 10.1007/bf00913182
  • On three-dimensional packets of surface waves. Proc. R. Soc. Lond. A 338, 101–110 (1974) – 10.1098/rspa.1974.0076
  • McLean, J. W. Instabilities of finite-amplitude water waves. J. Fluid Mech. 114, 315 (1982) – 10.1017/s0022112082000172
  • Li, Y., Zheng, Y., Lin, Z., Adcock, T. A. A. & van den Bremer, T. S. Surface wavepackets subject to an abrupt depth change. Part 1. Second-order theory. J. Fluid Mech. 915, (2021) – 10.1017/jfm.2021.48
  • Gramstad, O., Agnon, Y. & Stiassnie, M. The localized Zakharov equation: Derivation and validation. European Journal of Mechanics - B/Fluids 30, 137–146 (2011) – 10.1016/j.euromechflu.2010.10.004
  • TEIXEIRA, M. A. C. & BELCHER, S. E. On the distortion of turbulence by a progressive surface wave. J. Fluid Mech. 458, 229–267 (2002) – 10.1017/s0022112002007838
  • Babanin, A. V. On a wave‐induced turbulence and a wave‐mixed upper ocean layer. Geophysical Research Letters 33, (2006) – 10.1029/2006gl027308
  • Janssen, P. A. E. M. Nonlinear Four-Wave Interactions and Freak Waves. J. Phys. Oceanogr. 33, 863–884 (2003) – 10.1175/1520-0485(2003)33<863:nfiafw>2.0.co;2
  • Klahn, M., Madsen, P. A. & Fuhrman, D. R. On the accuracy and applicability of a new implicit Taylor method and the high-order spectral method on steady nonlinear waves. Proc. R. Soc. A. 476, (2020) – 10.1098/rspa.2020.0436
  • West, B. J., Brueckner, K. A., Janda, R. S., Milder, D. M. & Milton, R. L. A new numerical method for surface hydrodynamics. J. Geophys. Res. 92, 11803–11824 (1987) – 10.1029/jc092ic11p11803
  • GRAMSTAD, O. & TRULSEN, K. Hamiltonian form of the modified nonlinear Schrödinger equation for gravity waves on arbitrary depth. J. Fluid Mech. 670, 404–426 (2011) – 10.1017/s0022112010005355
  • Hasselmann, K. On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. J. Fluid Mech. 12, 481 (1962) – 10.1017/s0022112062000373
  • Stiassnie, M. & Shemer, L. On modifications of the Zakharov equation for surface gravity waves. J. Fluid Mech. 143, 47–67 (1984) – 10.1017/s0022112084001257
  • Lo, E. & Mei, C. C. A numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger equation. J. Fluid Mech. 150, 395–416 (1985) – 10.1017/s0022112085000180
  • The instabilities of gravity waves of finite amplitude in deep water I. Superharmonics. Proc. R. Soc. Lond. A 360, 471–488 (1978) – 10.1098/rspa.1978.0080
  • Trulsen, K., Kliakhandler, I., Dysthe, K. B. & Velarde, M. G. On weakly nonlinear modulation of waves on deep water. Physics of Fluids 12, 2432–2437 (2000) – 10.1063/1.1287856
  • Chu, V. H. & Mei, C. C. The non-linear evolution of Stokes waves in deep water. J. Fluid Mech. 47, 337–351 (1971) – 10.1017/s0022112071001095
  • CLAMOND, D. & GRUE, J. A fast method for fully nonlinear water-wave computations. J. Fluid Mech. 447, 337–355 (2001) – 10.1017/s0022112001006000
  • Slunyaev, A., Sergeeva, A. & Didenkulova, I. Rogue events in spatiotemporal numerical simulations of unidirectional waves in basins of different depth. Nat Hazards 84, 549–565 (2016) – 10.1007/s11069-016-2430-x
  • Janssen, P. The Interaction of Ocean Waves and Wind. (2004) doi:10.1017/cbo9780511525018 – 10.1017/cbo9780511525018
  • Krasitskii, V. P. On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech. 272, 1–20 (1994) – 10.1017/s0022112094004350
  • Onorato, M., Osborne, A. R. & Serio, M. On the relation between two numerical methods for the computation of random surface gravity waves. European Journal of Mechanics - B/Fluids 26, 43–48 (2007) – 10.1016/j.euromechflu.2006.05.001
  • Benney, D. J. & Newell, A. C. The Propagation of Nonlinear Wave Envelopes. Journal of Mathematics and Physics 46, 133–139 (1967) – 10.1002/sapm1967461133
  • Wei, G., Kirby, J. T., Grilli, S. T. & Subramanya, R. A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech. 294, 71–92 (1995) – 10.1017/s0022112095002813
  • Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc. R. Soc. Lond. A 369, 105–114 (1979) – 10.1098/rspa.1979.0154
  • ANNENKOV, S. YU. & SHRIRA, V. I. Numerical modelling of water-wave evolution based on the Zakharov equation. J. Fluid Mech. 449, 341–371 (2001) – 10.1017/s0022112001006139
  • Slunyaev, A. V. A high-order nonlinear envelope equation for gravity waves in finite-depth water. J. Exp. Theor. Phys. 101, 926–941 (2005) – 10.1134/1.2149072
  • Gramstad, O. The Zakharov equation with separate mean flow and mean surface. J. Fluid Mech. 740, 254–277 (2014) – 10.1017/jfm.2013.649
  • Janssen, P. A. E. M. On a fourth-order envelope equation for deep-water waves. J. Fluid Mech. 126, 1–11 (1983) – 10.1017/s0022112083000014
  • STIASSNIE, M. & GRAMSTAD, O. On Zakharov’s kernel and the interaction of non-collinear wavetrains in finite water depth. J. Fluid Mech. 639, 433–442 (2009) – 10.1017/s002211200999173x
  • Thorpe, S. A. LANGMUIR CIRCULATION. Annu. Rev. Fluid Mech. 36, 55–79 (2004) – 10.1146/annurev.fluid.36.052203.071431
  • Hochbruck, M. & Ostermann, A. Exponential integrators. Acta Numerica 19, 209–286 (2010) – 10.1017/s0962492910000048
  • Benjamin, T. B. & Feir, J. E. The disintegration of wave trains on deep water Part 1. Theory. J. Fluid Mech. 27, 417–430 (1967) – 10.1017/s002211206700045x
  • Dommermuth, D. The initialization of nonlinear waves using an adjustment scheme. Wave Motion 32, 307–317 (2000) – 10.1016/s0165-2125(00)00047-0