Observation of the anisotropic exceptional point in cavity magnonics system
Authors
Abstract
<sec> We theoretically and experimentally demonstrate the anisotropic exceptional points (EPs) in the cavity magnonics system where magnons in a one millimeter-diameter yttrium iron garnet (YIG) sphere are coherently coupled with the microwave photons in a three-dimensional microwave cavity. The damping nature makes the cavity magnonics system inherently non-Hermitian. By solving the eigenvalues and eigenvectors of non-Hermitian Hamiltonian, a series of interesting and essential characteristics of the system can be obtained. Therefore, non-Hermitian physics has received more and more attention in both theory and experiment communities. Among them, exceptional points correspond to the non-Hermitian system’s degenerate states where the eigenvalues of the non-Hermitian system are identical, and the eigenvectors are parallel. The coupled cavity photon-magnon system has high tunability of coupling strength and cavity external damping rate, which is very suitable for studying EPs -related physics.</sec><sec> Exceptional points (EPs) are crucial in all kinds of non-Hermitian physical systems, which have both fundamental and applicational importance. For instance, it can be used for sensitive detection by monitoring spectrum splitting of degenerate modes when a perturbation to be sensed occurs. The EPs can be anisotropic, which means that it has a different function relation when the system approaches the EPs along different parameter paths of the system. In this paper, by carefully designing the parameter space, we observe the anisotropic exceptional point in the coupled cavity photon-magnon system. It shows the linear and square-root behavior when the EPs are approached from different directions in the parameter space. One of the parameters is the position of the YIG sphere in the cavity, which determines the coherent coupling strength between the cavity mode and the magnon mode. Another parameter is the number of the gasket between the cavity signal loading port and the cavity external surface, which determines the external damping rate of the cavity mode. Both of these parameters can be easily and accurately adjusted experimentally.</sec><sec> Our study paves the way for exploring anisotropic EPs based sensing technologies and more non-Hermitian related physics in the cavity magnonics system.</sec>
Citation
- Journal: Acta Physica Sinica
- Year: 2020
- Volume: 69
- Issue: 4
- Pages: 047103
- Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
- DOI: 10.7498/aps.69.20191632
BibTeX
@article{Zhang_2020,
title={{Observation of the anisotropic exceptional point in cavity magnonics system}},
volume={69},
ISSN={1000-3290},
DOI={10.7498/aps.69.20191632},
number={4},
journal={Acta Physica Sinica},
publisher={Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences},
author={Zhang, Gao-Jian and Wang, Yi-Pu},
year={2020},
pages={047103}
}
References
- Xiang, Z.-L., Ashhab, S., You, J. Q. & Nori, F. Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013) – 10.1103/revmodphys.85.623
- Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl. Acad. Sci. U.S.A. 112, 3866–3873 (2015) – 10.1073/pnas.1419326112
- Wallquist, M., Hammerer, K., Rabl, P., Lukin, M. & Zoller, P. Hybrid quantum devices and quantum engineering. Phys. Scr. T137, 014001 (2009) – 10.1088/0031-8949/2009/t137/014001
- Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008) – 10.1038/nature07127
- Huebl, H. et al. High Cooperativity in Coupled Microwave Resonator Ferrimagnetic Insulator Hybrids. Phys. Rev. Lett. 111, (2013) – 10.1103/physrevlett.111.127003
- Tabuchi, Y. et al. Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limit. Phys. Rev. Lett. 113, (2014) – 10.1103/physrevlett.113.083603
- Zhang, X., Zou, C.-L., Jiang, L. & Tang, H. X. Strongly Coupled Magnons and Cavity Microwave Photons. Phys. Rev. Lett. 113, (2014) – 10.1103/physrevlett.113.156401
- Goryachev, M. et al. High-Cooperativity Cavity QED with Magnons at Microwave Frequencies. Phys. Rev. Applied 2, (2014) – 10.1103/physrevapplied.2.054002
- Bai, L. et al. Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems. Phys. Rev. Lett. 114, (2015) – 10.1103/physrevlett.114.227201
- Zhang, D. et al. Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere. npj Quantum Inf 1, (2015) – 10.1038/npjqi.2015.14
- Soykal, Ö. O. & Flatté, M. E. Strong Field Interactions between a Nanomagnet and a Photonic Cavity. Phys. Rev. Lett. 104, (2010) – 10.1103/physrevlett.104.077202
- Rameshti, B. Z. & Moghaddam, A. G. Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene. Phys. Rev. B 91, (2015) – 10.1103/physrevb.91.155407
- Cao, Y., Yan, P., Huebl, H., Goennenwein, S. T. B. & Bauer, G. E. W. Exchange magnon-polaritons in microwave cavities. Phys. Rev. B 91, (2015) – 10.1103/physrevb.91.094423
- Bourhill, J., Kostylev, N., Goryachev, M., Creedon, D. L. & Tobar, M. E. Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere. Phys. Rev. B 93, (2016) – 10.1103/physrevb.93.144420
- Kostylev, N., Goryachev, M. & Tobar, M. E. Superstrong coupling of a microwave cavity to yttrium iron garnet magnons. Applied Physics Letters 108, (2016) – 10.1063/1.4941730
- Yao, B. M. et al. Theory and experiment on cavity magnon-polariton in the one-dimensional configuration. Phys. Rev. B 92, (2015) – 10.1103/physrevb.92.184407
- Zhang, X., Zou, C.-L., Jiang, L. & Tang, H. X. Cavity magnomechanics. Sci. Adv. 2, (2016) – 10.1126/sciadv.1501286
- Tabuchi, Y. et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 349, 405–408 (2015) – 10.1126/science.aaa3693
- Osada, A. et al. Cavity Optomagnonics with Spin-Orbit Coupled Photons. Phys. Rev. Lett. 116, (2016) – 10.1103/physrevlett.116.223601
- Hisatomi, R. et al. Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, (2016) – 10.1103/physrevb.93.174427
- Haigh, J. A. et al. Magneto-optical coupling in whispering-gallery-mode resonators. Phys. Rev. A 92, (2015) – 10.1103/physreva.92.063845
- Zhang, X., Zhu, N., Zou, C.-L. & Tang, H. X. Optomagnonic Whispering Gallery Microresonators. Phys. Rev. Lett. 117, (2016) – 10.1103/physrevlett.117.123605
- Liu, T., Zhang, X., Tang, H. X. & Flatté, M. E. Optomagnonics in magnetic solids. Phys. Rev. B 94, (2016) – 10.1103/physrevb.94.060405
- Wang, Y.-P. et al. Magnon Kerr effect in a strongly coupled cavity-magnon system. Phys. Rev. B 94, (2016) – 10.1103/physrevb.94.224410
- Sharma, S., Blanter, Y. M. & Bauer, G. E. W. Light scattering by magnons in whispering gallery mode cavities. Phys. Rev. B 96, (2017) – 10.1103/physrevb.96.094412
- Sharma, S., Blanter, Y. M. & Bauer, G. E. W. Optical Cooling of Magnons. Phys. Rev. Lett. 121, (2018) – 10.1103/physrevlett.121.087205
- Osada, A. et al. Brillouin Light Scattering by Magnetic Quasivortices in Cavity Optomagnonics. Phys. Rev. Lett. 120, (2018) – 10.1103/physrevlett.120.133602
- Liu, Z.-X., Wang, B., Xiong, H. & Wu, Y. Magnon-induced high-order sideband generation. Opt. Lett. 43, 3698 (2018) – 10.1364/ol.43.003698
- Zhang, X. et al. Magnon dark modes and gradient memory. Nat Commun 6, (2015) – 10.1038/ncomms9914
- Lambert, N. J., Haigh, J. A., Langenfeld, S., Doherty, A. C. & Ferguson, A. J. Cavity-mediated coherent coupling of magnetic moments. Phys. Rev. A 93, (2016) – 10.1103/physreva.93.021803
- Bai, L. et al. Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton. Phys. Rev. Lett. 118, (2017) – 10.1103/physrevlett.118.217201
- Wang, Y.-P. et al. Bistability of Cavity Magnon Polaritons. Phys. Rev. Lett. 120, (2018) – 10.1103/physrevlett.120.057202
- Hyde, P. et al. Direct measurement of foldover in cavity magnon-polariton systems. Phys. Rev. B 98, (2018) – 10.1103/physrevb.98.174423
- Grigoryan, V. L., Shen, K. & Xia, K. Synchronized spin-photon coupling in a microwave cavity. Phys. Rev. B 98, (2018) – 10.1103/physrevb.98.024406
- Bhoi, B. et al. Abnormal anticrossing effect in photon-magnon coupling. Phys. Rev. B 99, (2019) – 10.1103/physrevb.99.134426
- Yang, Y. et al. Control of the Magnon-Photon Level Attraction in a Planar Cavity. Phys. Rev. Applied 11, (2019) – 10.1103/physrevapplied.11.054023
- Rao, J. W. et al. Level attraction and level repulsion of magnon coupled with a cavity anti-resonance. New J. Phys. 21, 065001 (2019) – 10.1088/1367-2630/ab2482
- Proskurin, I., Macêdo, R. & Stamps, R. L. Microscopic origin of level attraction for a coupled magnon-photon system in a microwave cavity. New J. Phys. 21, 095003 (2019) – 10.1088/1367-2630/ab3cb7
- Yu, W., Wang, J., Yuan, H. Y. & Xiao, J. Prediction of Attractive Level Crossing via a Dissipative Mode. Phys. Rev. Lett. 123, (2019) – 10.1103/physrevlett.123.227201
- Wang, Y.-P. et al. Nonreciprocity and Unidirectional Invisibility in Cavity Magnonics. Phys. Rev. Lett. 123, (2019) – 10.1103/physrevlett.123.127202
- Li, J., Zhu, S.-Y. & Agarwal, G. S. Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics. Phys. Rev. Lett. 121, (2018) – 10.1103/physrevlett.121.203601
- Li, J., Zhu, S.-Y. & Agarwal, G. S. Squeezed states of magnons and phonons in cavity magnomechanics. Phys. Rev. A 99, (2019) – 10.1103/physreva.99.021801
- Bender, C. M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007) – 10.1088/0034-4885/70/6/r03
- Chen Zeng-Jun & Ning Xi-Jing. Physical meaning of non-Hermitian Hamiltonian. Acta Phys. Sin. 52, 2683 (2003) – 10.7498/aps.52.2683
- Gilbert, T. L. Classics in Magnetics A Phenomenological Theory of Damping in Ferromagnetic Materials. IEEE Trans. Magn. 40, 3443–3449 (2004) – 10.1109/tmag.2004.836740
- Stancil, D. D. & Prabhakar, A. Nonlinear Interactions. Spin Waves 263–308 (2009) doi:10.1007/978-0-387-77865-5_9 – 10.1007/978-0-387-77865-5_9
- Zhang, D., Luo, X.-Q., Wang, Y.-P., Li, T.-F. & You, J. Q. Observation of the exceptional point in cavity magnon-polaritons. Nat Commun 8, (2017) – 10.1038/s41467-017-01634-w
- Dembowski, C. et al. Experimental Observation of the Topological Structure of Exceptional Points. Phys. Rev. Lett. 86, 787–790 (2001) – 10.1103/physrevlett.86.787
- Dembowski, C. et al. Observation of a Chiral State in a Microwave Cavity. Phys. Rev. Lett. 90, (2003) – 10.1103/physrevlett.90.034101
- Gao, T. et al. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 554–558 (2015) – 10.1038/nature15522
- Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016) – 10.1038/nature18605
- Heiss, W. D. The physics of exceptional points. J. Phys. A: Math. Theor. 45, 444016 (2012) – 10.1088/1751-8113/45/44/444016
- Monakhov, E. V., Kuznetsov, A. Y. & Svensson, B. G. Zinc oxide: bulk growth, role of hydrogen and Schottky diodes. J. Phys. D: Appl. Phys. 42, 153001 (2009) – 10.1088/0022-3727/42/15/153001
- Eleuch, H. & Rotter, I. Open quantum systems and Dicke superradiance. Eur. Phys. J. D 68, (2014) – 10.1140/epjd/e2014-40780-8
- Ding, K., Ma, G., Xiao, M., Zhang, Z. Q. & Chan, C. T. Emergence, Coalescence, and Topological Properties of Multiple Exceptional Points and Their Experimental Realization. Phys. Rev. X 6, (2016) – 10.1103/physrevx.6.021007
- Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nature Photon 8, 821–829 (2014) – 10.1038/nphoton.2014.248
- Zhou, H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009–1012 (2018) – 10.1126/science.aap9859
- Shen, H., Zhen, B. & Fu, L. Topological Band Theory for Non-Hermitian Hamiltonians. Phys. Rev. Lett. 120, (2018) – 10.1103/physrevlett.120.146402
- Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017) – 10.1038/nature23280
- Lin, Z., Pick, A., Lončar, M. & Rodriguez, A. W. Enhanced Spontaneous Emission at Third-Order Dirac Exceptional Points in Inverse-Designed Photonic Crystals. Phys. Rev. Lett. 117, (2016) – 10.1103/physrevlett.117.107402
- Jing, H., Özdemir, Ş. K., Lü, H. & Nori, F. High-order exceptional points in optomechanics. Sci Rep 7, (2017) – 10.1038/s41598-017-03546-7
- Nada, M. Y., Othman, M. A. K. & Capolino, F. Theory of coupled resonator optical waveguides exhibiting high-order exceptional points of degeneracy. Phys. Rev. B 96, (2017) – 10.1103/physrevb.96.184304
- Zhang, G.-Q. & You, J. Q. Higher-order exceptional point in a cavity magnonics system. Phys. Rev. B 99, (2019) – 10.1103/physrevb.99.054404
- Kato, T. Perturbation Theory for Linear Operators. (Springer Berlin Heidelberg, 1966). doi:10.1007/978-3-642-53393-8 – 10.1007/978-3-642-53393-8
- Ding, K., Ma, G., Zhang, Z. Q. & Chan, C. T. Experimental Demonstration of an Anisotropic Exceptional Point. Phys. Rev. Lett. 121, (2018) – 10.1103/physrevlett.121.085702
- Rotter, I. A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A: Math. Theor. 42, 153001 (2009) – 10.1088/1751-8113/42/15/153001
- Eleuch, H. & Rotter, I. Nearby states in non-Hermitian quantum systems I: Two states. Eur. Phys. J. D 69, (2015) – 10.1140/epjd/e2015-60389-7
- Kittel, C. On the Theory of Ferromagnetic Resonance Absorption. Phys. Rev. 73, 155–161 (1948) – 10.1103/physrev.73.155