Authors

Zhiyuan Fan, Xuan Zuo, Haotian Li, Jie Li

Abstract

We propose a new mechanism to achieve nonreciprocal quantum entanglement in a cavity magnomechanical system by exploiting the chiral cavity-magnon coupling. The system consists of a magnon mode, a mechanical vibration mode, and two degenerate counter-propagating microwave cavity modes in a torus-shaped cavity. We show that nonreciprocal stationary microwave-magnon and -phonon bipartite entanglements and photon-magnon-phonon tripartite entanglement can be achieved by respectively driving different circulating cavity modes that hold a chiral coupling to the magnon mode. The nonreciprocal entanglements are shown to be robust against various experimental imperfections. We specifically show how such nonreciprocal entanglement can realize the channel multiplexing quantum teleportation from a microwave field to a solid-state magnon mode. The work may find promising applications of the cavity magnomechanical systems in noise-tolerant quantum processing, channel multiplexing quantum teleportation, and chiral magnonic quantum networks.

Keywords

Cavity magnonics; Cavity magnomechanics; Nonreciprocal entanglement; Chiral cavity-magnon coupling

Citation

BibTeX

@article{Fan_2025,
  title={{Nonreciprocal entanglement in cavity magnomechanics exploiting chiral cavity-magnon coupling}},
  ISSN={2667-3258},
  DOI={10.1016/j.fmre.2025.02.012},
  journal={Fundamental Research},
  publisher={Elsevier BV},
  author={Fan, Zhiyuan and Zuo, Xuan and Li, Haotian and Li, Jie},
  year={2025}
}

Download the bib file

References

  • Huebl, H. et al. High Cooperativity in Coupled Microwave Resonator Ferrimagnetic Insulator Hybrids. Physical Review Letters vol. 111 (2013) – 10.1103/physrevlett.111.127003
  • Tabuchi, Y. et al. Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limit. Physical Review Letters vol. 113 (2014) – 10.1103/physrevlett.113.083603
  • Zhang, X., Zou, C.-L., Jiang, L. & Tang, H. X. Strongly Coupled Magnons and Cavity Microwave Photons. Physical Review Letters vol. 113 (2014) – 10.1103/physrevlett.113.156401
  • Osada, A. et al. Cavity Optomagnonics with Spin-Orbit Coupled Photons. Physical Review Letters vol. 116 (2016) – 10.1103/physrevlett.116.223601
  • Zhang, X., Zhu, N., Zou, C.-L. & Tang, H. X. Optomagnonic Whispering Gallery Microresonators. Physical Review Letters vol. 117 (2016) – 10.1103/physrevlett.117.123605
  • Haigh, J. A., Nunnenkamp, A., Ramsay, A. J. & Ferguson, A. J. Triple-Resonant Brillouin Light Scattering in Magneto-Optical Cavities. Physical Review Letters vol. 117 (2016) – 10.1103/physrevlett.117.133602
  • Osada, A. et al. Brillouin Light Scattering by Magnetic Quasivortices in Cavity Optomagnonics. Physical Review Letters vol. 120 (2018) – 10.1103/physrevlett.120.133602
  • Zhang, X., Zou, C.-L., Jiang, L. & Tang, H. X. Cavity magnomechanics. Science Advances vol. 2 (2016) – 10.1126/sciadv.1501286
  • Li, J., Zhu, S.-Y. & Agarwal, G. S. Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics. Physical Review Letters vol. 121 (2018) – 10.1103/physrevlett.121.203601
  • Potts, Dynamical backaction magnomechanics. Phys. Rev. X (2021)
  • Shen, R.-C., Li, J., Fan, Z.-Y., Wang, Y.-P. & You, J. Q. Mechanical Bistability in Kerr-modified Cavity Magnomechanics. Physical Review Letters vol. 129 (2022) – 10.1103/physrevlett.129.123601
  • Tabuchi, Y. et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science vol. 349 405–408 (2015) – 10.1126/science.aaa3693
  • Lachance-Quirion, D. et al. Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet. Science Advances vol. 3 (2017) – 10.1126/sciadv.1603150
  • Lachance-Quirion, D. et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science vol. 367 425–428 (2020) – 10.1126/science.aaz9236
  • Xu, D. et al. Quantum Control of a Single Magnon in a Macroscopic Spin System. Physical Review Letters vol. 130 (2023) – 10.1103/physrevlett.130.193603
  • Hei, X.-L., Li, P.-B., Pan, X.-F. & Nori, F. Enhanced Tripartite Interactions in Spin-Magnon-Mechanical Hybrid Systems. Physical Review Letters vol. 130 (2023) – 10.1103/physrevlett.130.073602
  • Wang, Y. et al. Quantum parametric amplification of phonon-mediated magnon-spin interaction. Science China Physics, Mechanics & Astronomy vol. 66 (2023) – 10.1007/s11433-023-2180-x
  • Zuo, X. et al. Cavity magnomechanics: from classical to quantum. New Journal of Physics vol. 26 031201 (2024) – 10.1088/1367-2630/ad327c
  • Xiong, Magnonic frequency combs based on the resonantly enhanced magnetostrictive effect. Fund. Res. (2023)
  • Xu, G.-T. et al. Magnonic Frequency Comb in the Magnomechanical Resonator. Physical Review Letters vol. 131 (2023) – 10.1103/physrevlett.131.243601
  • Cheng, J., Li, W. & Li, J. Synchronization by magnetostriction. Physical Review Research vol. 5 (2023) – 10.1103/physrevresearch.5.043197
  • Li, W., Cheng, J., Gong, W. & Li, J. Nonlinear self-sustaining dynamics in cavity magnomechanics. Physical Review A vol. 108 (2023) – 10.1103/physreva.108.033518
  • Li, J. & Zhu, S.-Y. Entangling two magnon modes via magnetostrictive interaction. New Journal of Physics vol. 21 085001 (2019) – 10.1088/1367-2630/ab3508
  • Yu, M., Shen, H. & Li, J. Magnetostrictively Induced Stationary Entanglement between Two Microwave Fields. Physical Review Letters vol. 124 (2020) – 10.1103/physrevlett.124.213604
  • Li, J. & Gröblacher, S. Entangling the vibrational modes of two massive ferromagnetic spheres using cavity magnomechanics. Quantum Science and Technology vol. 6 024005 (2021) – 10.1088/2058-9565/abd982
  • Li, J., Zhu, S.-Y. & Agarwal, G. S. Squeezed states of magnons and phonons in cavity magnomechanics. Physical Review A vol. 99 (2019) – 10.1103/physreva.99.021801
  • Zhang, W. et al. Generation and transfer of squeezed states in a cavity magnomechanical system by two-tone microwave fields. Optics Express vol. 29 11773 (2021) – 10.1364/oe.418531
  • Li, J., Wang, Y.-P., You, J.-Q. & Zhu, S.-Y. Squeezing microwaves by magnetostriction. National Science Review vol. 10 (2022) – 10.1093/nsr/nwac247
  • Qian, H., Zuo, X., Fan, Z.-Y., Cheng, J. & Li, J. Strong squeezing of microwave output fields via reservoir-engineered cavity magnomechanics. Physical Review A vol. 109 (2024) – 10.1103/physreva.109.013704
  • Tan, H. Genuine photon-magnon-phonon Einstein-Podolsky-Rosen steerable nonlocality in a continuously-monitored cavity magnomechanical system. Physical Review Research vol. 1 (2019) – 10.1103/physrevresearch.1.033161
  • Chen, Y.-T., Du, L., Zhang, Y. & Wu, J.-H. Perfect transfer of enhanced entanglement and asymmetric steering in a cavity-magnomechanical system. Physical Review A vol. 103 (2021) – 10.1103/physreva.103.053712
  • Zhang, W., Wang, T., Han, X., Zhang, S. & Wang, H.-F. Quantum entanglement and one-way steering in a cavity magnomechanical system via a squeezed vacuum field. Optics Express vol. 30 10969 (2022) – 10.1364/oe.453787
  • Tan, H. Measurement-Based Control of Quantum Entanglement and Steering in a Distant Magnomechanical System. Photonics vol. 10 1081 (2023) – 10.3390/photonics10101081
  • Ding, M.-S., Zheng, L. & Li, C. Ground-state cooling of a magnomechanical resonator induced by magnetic damping. Journal of the Optical Society of America B vol. 37 627 (2020) – 10.1364/josab.380755
  • Lu, T.-X., Zhang, H., Zhang, Q. & Jing, H. Exceptional-point-engineered cavity magnomechanics. Physical Review A vol. 103 (2021) – 10.1103/physreva.103.063708
  • Asjad, Magnon squeezing enhanced ground-state cooling in cavity magnomechanics. Fund. Res. (2023)
  • Lachance-Quirion, D., Tabuchi, Y., Gloppe, A., Usami, K. & Nakamura, Y. Hybrid quantum systems based on magnonics. Applied Physics Express vol. 12 070101 (2019) – 10.7567/1882-0786/ab248d
  • Yuan, H. Y., Cao, Y., Kamra, A., Duine, R. A. & Yan, P. Quantum magnonics: When magnon spintronics meets quantum information science. Physics Reports vol. 965 1–74 (2022) – 10.1016/j.physrep.2022.03.002
  • Lodahl, P. et al. Chiral quantum optics. Nature vol. 541 473–480 (2017) – 10.1038/nature21037
  • Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science vol. 346 67–71 (2014) – 10.1126/science.1257671
  • Kim, J., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nature Physics vol. 11 275–280 (2015) – 10.1038/nphys3236
  • Dong, C.-H. et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nature Communications vol. 6 (2015) – 10.1038/ncomms7193
  • Gong, S.-H., Alpeggiani, F., Sciacca, B., Garnett, E. C. & Kuipers, L. Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science vol. 359 443–447 (2018) – 10.1126/science.aan8010
  • Söllner, I. et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nature Nanotechnology vol. 10 775–778 (2015) – 10.1038/nnano.2015.159
  • Mahmoodian, S., Lodahl, P. & Sørensen, A. S. Quantum Networks with Chiral-Light–Matter Interaction in Waveguides. Physical Review Letters vol. 117 (2016) – 10.1103/physrevlett.117.240501
  • Mitsch, R., Sayrin, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nature Communications vol. 5 (2014) – 10.1038/ncomms6713
  • Pucher, S., Liedl, C., Jin, S., Rauschenbeutel, A. & Schneeweiss, P. Atomic spin-controlled non-reciprocal Raman amplification of fibre-guided light. Nature Photonics vol. 16 380–383 (2022) – 10.1038/s41566-022-00987-z
  • Coles, R. J. et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nature Communications vol. 7 (2016) – 10.1038/ncomms11183
  • Zare Rameshti, B. et al. Cavity magnonics. Physics Reports vol. 979 1–61 (2022) – 10.1016/j.physrep.2022.06.001
  • Yu, W., Yu, T. & Bauer, G. E. W. Circulating cavity magnon polaritons. Physical Review B vol. 102 (2020) – 10.1103/physrevb.102.064416
  • Bourhill, J. et al. Generation of Circulating Cavity Magnon Polaritons. Physical Review Applied vol. 19 (2023) – 10.1103/physrevapplied.19.014030
  • Zhang, X., Galda, A., Han, X., Jin, D. & Vinokur, V. M. Broadband Nonreciprocity Enabled by Strong Coupling of Magnons and Microwave Photons. Physical Review Applied vol. 13 (2020) – 10.1103/physrevapplied.13.044039
  • Huang, R., Miranowicz, A., Liao, J.-Q., Nori, F. & Jing, H. Nonreciprocal Photon Blockade. Physical Review Letters vol. 121 (2018) – 10.1103/physrevlett.121.153601
  • Jiao, Y.-F. et al. Nonreciprocal Optomechanical Entanglement against Backscattering Losses. Physical Review Letters vol. 125 (2020) – 10.1103/physrevlett.125.143605
  • Yang, Nonreciprocal transmission and nonreciprocal entanglement in a spinning microwave magnomechanical system. Ann. Phys. (Berlin) (2020)
  • Jiao, Y.-F. et al. Nonreciprocal Enhancement of Remote Entanglement between Nonidentical Mechanical Oscillators. Physical Review Applied vol. 18 (2022) – 10.1103/physrevapplied.18.064008
  • Liu, J.-X. et al. Phase-controlled asymmetric optomechanical entanglement against optical backscattering. Science China Physics, Mechanics & Astronomy vol. 66 (2023) – 10.1007/s11433-022-2043-3
  • Ren, Y. Nonreciprocal optical–microwave entanglement in a spinning magnetic resonator. Optics Letters vol. 47 1125 (2022) – 10.1364/ol.451050
  • Chen, J., Fan, X.-G., Xiong, W., Wang, D. & Ye, L. Nonreciprocal entanglement in cavity-magnon optomechanics. Physical Review B vol. 108 (2023) – 10.1103/physrevb.108.024105
  • Chakraborty, S. & Das, C. Nonreciprocal magnon-photon-phonon entanglement in cavity magnomechanics. Physical Review A vol. 108 (2023) – 10.1103/physreva.108.063704
  • Yang, Z.-B., Ming, Y., Yang, R.-C. & Liu, H.-Y. Asymmetric transmission and entanglement in a double-cavity magnomechanical system. Journal of the Optical Society of America B vol. 40 822 (2023) – 10.1364/josab.481012
  • Zheng, Q., Zhong, W., Cheng, G. & Chen, A. Nonreciprocal tripartite entanglement based on magnon Kerr effect in a spinning microwave resonator. Optics Communications vol. 546 129796 (2023) – 10.1016/j.optcom.2023.129796
  • Zheng, Q., Zhong, W., Cheng, G. & Chen, A. Nonreciprocal microwave-optical entanglement in a magnon-based hybrid system. Journal of Applied Physics vol. 135 (2024) – 10.1063/5.0190162
  • Chen, J., Fan, X.-G., Xiong, W., Wang, D. & Ye, L. Nonreciprocal photon-phonon entanglement in Kerr-modified spinning cavity magnomechanics. Physical Review A vol. 109 (2024) – 10.1103/physreva.109.043512
  • Yang, Z.-B. et al. Controlling Stationary One-Way Quantum Steering in Cavity Magnonics. Physical Review Applied vol. 15 (2021) – 10.1103/physrevapplied.15.024042
  • Tan, H. & Li, J. Einstein-Podolsky-Rosen entanglement and asymmetric steering between distant macroscopic mechanical and magnonic systems. Physical Review Research vol. 3 (2021) – 10.1103/physrevresearch.3.013192
  • Zhan, H., Sun, L. & Tan, H. Chirality-induced one-way quantum steering between two waveguide-mediated ferrimagnetic microspheres. Physical Review B vol. 106 (2022) – 10.1103/physrevb.106.104432
  • Guan, S.-Y., Wang, H.-F. & Yi, X. Cooperative-effect-induced one-way steering in open cavity magnonics. npj Quantum Information vol. 8 (2022) – 10.1038/s41534-022-00619-y
  • Zhong, W., Zheng, Q., Cheng, G. & Chen, A. Nonreciprocal genuine steering of three macroscopic samples in a spinning microwave magnonical system. Applied Physics Letters vol. 123 (2023) – 10.1063/5.0166869
  • Xie, J., Ma, S., Ren, Y., Gao, S. & Li, F. Chiral cavity-magnonic system for the unidirectional emission of a tunable squeezed microwave field. Physical Review A vol. 108 (2023) – 10.1103/physreva.108.033701
  • Guo, Q. et al. Nonreciprocal mechanical squeezing in a spinning cavity optomechanical system via pump modulation. Physical Review A vol. 108 (2023) – 10.1103/physreva.108.033515
  • Li, B., Huang, R., Xu, X., Miranowicz, A. & Jing, H. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photonics Research vol. 7 630 (2019) – 10.1364/prj.7.000630
  • Xu, X., Zhao, Y., Wang, H., Jing, H. & Chen, A. Quantum nonreciprocality in quadratic optomechanics. Photonics Research vol. 8 143 (2020) – 10.1364/prj.8.000143
  • Xie, H., He, L.-W., Shang, X., Lin, G.-W. & Lin, X.-M. Nonreciprocal photon blockade in cavity optomagnonics. Physical Review A vol. 106 (2022) – 10.1103/physreva.106.053707
  • Wang, Y., Xiong, W., Xu, Z., Zhang, G.-Q. & You, J.-Q. Dissipation-induced nonreciprocal magnon blockade in a magnon-based hybrid system. Science China Physics, Mechanics & Astronomy vol. 65 (2022) – 10.1007/s11433-021-1880-7
  • Jiang, Y., Maayani, S., Carmon, T., Nori, F. & Jing, H. Nonreciprocal Phonon Laser. Physical Review Applied vol. 10 (2018) – 10.1103/physrevapplied.10.064037
  • Xu, Y., Liu, J.-Y., Liu, W. & Xiao, Y.-F. Nonreciprocal phonon laser in a spinning microwave magnomechanical system. Physical Review A vol. 103 (2021) – 10.1103/physreva.103.053501
  • Xu, Y. & Song, J. Nonreciprocal magnon laser. Optics Letters vol. 46 5276 (2021) – 10.1364/ol.440608
  • Huang, K.-W., Wu, Y. & Si, L.-G. Parametric-amplification-induced nonreciprocal magnon laser. Optics Letters vol. 47 3311 (2022) – 10.1364/ol.459917
  • Hafezi, M. & Rabl, P. Optomechanically induced non-reciprocity in microring resonators. Optics Express vol. 20 7672 (2012) – 10.1364/oe.20.007672
  • Xu, X.-W., Chen, A.-X., Li, Y. & Liu, Y. Nonreciprocal single-photon frequency converter via multiple semi-infinite coupled-resonator waveguides. Physical Review A vol. 96 (2017) – 10.1103/physreva.96.053853
  • Ren, Y. et al. Nonreciprocal single-photon quantum router. Physical Review A vol. 105 (2022) – 10.1103/physreva.105.013711
  • Xie, J. et al. Nonreciprocal single-photon state conversion between microwave and optical modes in a hybrid magnonic system. New Journal of Physics vol. 25 073009 (2023) – 10.1088/1367-2630/ace3eb
  • Wang, X., Qiu, Q.-Y., Huang, K.-W. & Xiong, H. Nonreciprocal single-photon scattering in giant-spin-ensemble–waveguide magnonics. Physical Review A vol. 108 (2023) – 10.1103/physreva.108.063715
  • Giovannetti, V. & Vitali, D. Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion. Physical Review A vol. 63 (2001) – 10.1103/physreva.63.023812
  • Vitali, D. et al. Optomechanical Entanglement between a Movable Mirror and a Cavity Field. Physical Review Letters vol. 98 (2007) – 10.1103/physrevlett.98.030405
  • Adesso, G., Serafini, A. & Illuminati, F. Extremal entanglement and mixedness in continuous variable systems. Physical Review A vol. 70 (2004) – 10.1103/physreva.70.022318
  • Adesso, G. & Illuminati, F. Entanglement in continuous-variable systems: recent advances and current perspectives. Journal of Physics A: Mathematical and Theoretical vol. 40 7821–7880 (2007) – 10.1088/1751-8113/40/28/s01
  • Furusawa, A. et al. Unconditional Quantum Teleportation. Science vol. 282 706–709 (1998) – 10.1126/science.282.5389.706
  • Fiurášek, J. Improving the fidelity of continuous-variable teleportation via local operations. Physical Review A vol. 66 (2002) – 10.1103/physreva.66.012304
  • Genes, C., Mari, A., Tombesi, P. & Vitali, D. Robust entanglement of a micromechanical resonator with output optical fields. Physical Review A vol. 78 (2008) – 10.1103/physreva.78.032316
  • Braunstein, S. L., Fuchs, C. A. & Kimble, H. J. Criteria for continuous-variable quantum teleportation. Journal of Modern Optics vol. 47 267–278 (2000) – 10.1080/09500340008244041
  • Yukawa, M., Benichi, H. & Furusawa, A. High-fidelity continuous-variable quantum teleportation toward multistep quantum operations. Physical Review A vol. 77 (2008) – 10.1103/physreva.77.022314
  • Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A. & Braunstein, S. L. Advances in quantum teleportation. Nature Photonics vol. 9 641–652 (2015) – 10.1038/nphoton.2015.154
  • Hu, X.-M., Guo, Y., Liu, B.-H., Li, C.-F. & Guo, G.-C. Progress in quantum teleportation. Nature Reviews Physics vol. 5 339–353 (2023) – 10.1038/s42254-023-00588-x
  • Sherson, J. F. et al. Quantum teleportation between light and matter. Nature vol. 443 557–560 (2006) – 10.1038/nature05136