Authors

Zhiyuan Fan, Xuan Zuo, Haotian Li, Jie Li

Abstract

We propose a new mechanism to achieve nonreciprocal quantum entanglement in a cavity magnomechanical system by exploiting the chiral cavity-magnon coupling. The system consists of a magnon mode, a mechanical vibration mode, and two degenerate counter-propagating microwave cavity modes in a torus-shaped cavity. We show that nonreciprocal stationary microwave-magnon and -phonon bipartite entanglements and photon-magnon-phonon tripartite entanglement can be achieved by respectively driving different circulating cavity modes that hold a chiral coupling to the magnon mode. The nonreciprocal entanglements are shown to be robust against various experimental imperfections. We specifically show how such nonreciprocal entanglement can realize the channel multiplexing quantum teleportation from a microwave field to a solid-state magnon mode. The work may find promising applications of the cavity magnomechanical systems in noise-tolerant quantum processing, channel multiplexing quantum teleportation, and chiral magnonic quantum networks.

Keywords

Cavity magnonics; Cavity magnomechanics; Nonreciprocal entanglement; Chiral cavity-magnon coupling; Nonreciprocal quantum effects

Citation

  • Journal: Fundamental Research
  • Year: 2025
  • Volume: 5
  • Issue: 5
  • Pages: 1958–1965
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.fmre.2025.02.012

BibTeX

@article{Fan_2025,
  title={{Nonreciprocal entanglement in cavity magnomechanics exploiting chiral cavity-magnon coupling}},
  volume={5},
  ISSN={2667-3258},
  DOI={10.1016/j.fmre.2025.02.012},
  number={5},
  journal={Fundamental Research},
  publisher={Elsevier BV},
  author={Fan, Zhiyuan and Zuo, Xuan and Li, Haotian and Li, Jie},
  year={2025},
  pages={1958--1965}
}

Download the bib file

References

  • Huebl, H. et al. High Cooperativity in Coupled Microwave Resonator Ferrimagnetic Insulator Hybrids. Phys. Rev. Lett. 111, (2013) – 10.1103/physrevlett.111.127003
  • Tabuchi, Y. et al. Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limit. Phys. Rev. Lett. 113, (2014) – 10.1103/physrevlett.113.083603
  • Zhang, X., Zou, C.-L., Jiang, L. & Tang, H. X. Strongly Coupled Magnons and Cavity Microwave Photons. Phys. Rev. Lett. 113, (2014) – 10.1103/physrevlett.113.156401
  • Osada, A. et al. Cavity Optomagnonics with Spin-Orbit Coupled Photons. Phys. Rev. Lett. 116, (2016) – 10.1103/physrevlett.116.223601
  • Zhang, X., Zhu, N., Zou, C.-L. & Tang, H. X. Optomagnonic Whispering Gallery Microresonators. Phys. Rev. Lett. 117, (2016) – 10.1103/physrevlett.117.123605
  • Haigh, J. A., Nunnenkamp, A., Ramsay, A. J. & Ferguson, A. J. Triple-Resonant Brillouin Light Scattering in Magneto-Optical Cavities. Phys. Rev. Lett. 117, (2016) – 10.1103/physrevlett.117.133602
  • Osada, A. et al. Brillouin Light Scattering by Magnetic Quasivortices in Cavity Optomagnonics. Phys. Rev. Lett. 120, (2018) – 10.1103/physrevlett.120.133602
  • Zhang, X., Zou, C.-L., Jiang, L. & Tang, H. X. Cavity magnomechanics. Sci. Adv. 2, (2016) – 10.1126/sciadv.1501286
  • Li, J., Zhu, S.-Y. & Agarwal, G. S. Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics. Phys. Rev. Lett. 121, (2018) – 10.1103/physrevlett.121.203601
  • Potts, Dynamical backaction magnomechanics. Phys. Rev. X (2021)
  • Shen, R.-C., Li, J., Fan, Z.-Y., Wang, Y.-P. & You, J. Q. Mechanical Bistability in Kerr-modified Cavity Magnomechanics. Phys. Rev. Lett. 129, (2022) – 10.1103/physrevlett.129.123601
  • Tabuchi, Y. et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 349, 405–408 (2015) – 10.1126/science.aaa3693
  • Lachance-Quirion, D. et al. Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet. Sci. Adv. 3, (2017) – 10.1126/sciadv.1603150
  • Lachance-Quirion, D. et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science 367, 425–428 (2020) – 10.1126/science.aaz9236
  • Xu, D. et al. Quantum Control of a Single Magnon in a Macroscopic Spin System. Phys. Rev. Lett. 130, (2023) – 10.1103/physrevlett.130.193603
  • Hei, X.-L., Li, P.-B., Pan, X.-F. & Nori, F. Enhanced Tripartite Interactions in Spin-Magnon-Mechanical Hybrid Systems. Phys. Rev. Lett. 130, (2023) – 10.1103/physrevlett.130.073602
  • Wang, Y. et al. Quantum parametric amplification of phonon-mediated magnon-spin interaction. Sci. China Phys. Mech. Astron. 66, (2023) – 10.1007/s11433-023-2180-x
  • Zuo, X. et al. Cavity magnomechanics: from classical to quantum. New J. Phys. 26, 031201 (2024) – 10.1088/1367-2630/ad327c
  • Xiong, Magnonic frequency combs based on the resonantly enhanced magnetostrictive effect. Fund. Res. (2023)
  • Xu, G.-T. et al. Magnonic Frequency Comb in the Magnomechanical Resonator. Phys. Rev. Lett. 131, (2023) – 10.1103/physrevlett.131.243601
  • Cheng, J., Li, W. & Li, J. Synchronization by magnetostriction. Phys. Rev. Research 5, (2023) – 10.1103/physrevresearch.5.043197
  • Li, W., Cheng, J., Gong, W. & Li, J. Nonlinear self-sustaining dynamics in cavity magnomechanics. Phys. Rev. A 108, (2023) – 10.1103/physreva.108.033518
  • Li, J. & Zhu, S.-Y. Entangling two magnon modes via magnetostrictive interaction. New J. Phys. 21, 085001 (2019) – 10.1088/1367-2630/ab3508
  • Yu, M., Shen, H. & Li, J. Magnetostrictively Induced Stationary Entanglement between Two Microwave Fields. Phys. Rev. Lett. 124, (2020) – 10.1103/physrevlett.124.213604
  • Li, J. & Gröblacher, S. Entangling the vibrational modes of two massive ferromagnetic spheres using cavity magnomechanics. Quantum Sci. Technol. 6, 024005 (2021) – 10.1088/2058-9565/abd982
  • Li, J., Zhu, S.-Y. & Agarwal, G. S. Squeezed states of magnons and phonons in cavity magnomechanics. Phys. Rev. A 99, (2019) – 10.1103/physreva.99.021801
  • Zhang, W. et al. Generation and transfer of squeezed states in a cavity magnomechanical system by two-tone microwave fields. Opt. Express 29, 11773 (2021) – 10.1364/oe.418531
  • Li, J., Wang, Y.-P., You, J.-Q. & Zhu, S.-Y. Squeezing microwaves by magnetostriction. National Science Review 10, (2022) – 10.1093/nsr/nwac247
  • Qian, H., Zuo, X., Fan, Z.-Y., Cheng, J. & Li, J. Strong squeezing of microwave output fields via reservoir-engineered cavity magnomechanics. Phys. Rev. A 109, (2024) – 10.1103/physreva.109.013704
  • Tan, H. Genuine photon-magnon-phonon Einstein-Podolsky-Rosen steerable nonlocality in a continuously-monitored cavity magnomechanical system. Phys. Rev. Research 1, (2019) – 10.1103/physrevresearch.1.033161
  • Chen, Y.-T., Du, L., Zhang, Y. & Wu, J.-H. Perfect transfer of enhanced entanglement and asymmetric steering in a cavity-magnomechanical system. Phys. Rev. A 103, (2021) – 10.1103/physreva.103.053712
  • Zhang, W., Wang, T., Han, X., Zhang, S. & Wang, H.-F. Quantum entanglement and one-way steering in a cavity magnomechanical system via a squeezed vacuum field. Opt. Express 30, 10969 (2022) – 10.1364/oe.453787
  • Tan, H. Measurement-Based Control of Quantum Entanglement and Steering in a Distant Magnomechanical System. Photonics 10, 1081 (2023) – 10.3390/photonics10101081
  • Ding, M.-S., Zheng, L. & Li, C. Ground-state cooling of a magnomechanical resonator induced by magnetic damping. J. Opt. Soc. Am. B 37, 627 (2020) – 10.1364/josab.380755
  • Lu, T.-X., Zhang, H., Zhang, Q. & Jing, H. Exceptional-point-engineered cavity magnomechanics. Phys. Rev. A 103, (2021) – 10.1103/physreva.103.063708
  • Asjad, Magnon squeezing enhanced ground-state cooling in cavity magnomechanics. Fund. Res. (2023)
  • Lachance-Quirion, D., Tabuchi, Y., Gloppe, A., Usami, K. & Nakamura, Y. Hybrid quantum systems based on magnonics. Appl. Phys. Express 12, 070101 (2019) – 10.7567/1882-0786/ab248d
  • Yuan, H. Y., Cao, Y., Kamra, A., Duine, R. A. & Yan, P. Quantum magnonics: When magnon spintronics meets quantum information science. Physics Reports 965, 1–74 (2022) – 10.1016/j.physrep.2022.03.002
  • Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017) – 10.1038/nature21037
  • Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346, 67–71 (2014) – 10.1126/science.1257671
  • Kim, J., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nature Phys 11, 275–280 (2015) – 10.1038/nphys3236
  • Dong, C.-H. et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat Commun 6, (2015) – 10.1038/ncomms7193
  • Gong, S.-H., Alpeggiani, F., Sciacca, B., Garnett, E. C. & Kuipers, L. Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science 359, 443–447 (2018) – 10.1126/science.aan8010
  • Söllner, I. et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nature Nanotech 10, 775–778 (2015) – 10.1038/nnano.2015.159
  • Mahmoodian, S., Lodahl, P. & Sørensen, A. S. Quantum Networks with Chiral-Light–Matter Interaction in Waveguides. Phys. Rev. Lett. 117, (2016) – 10.1103/physrevlett.117.240501
  • Mitsch, R., Sayrin, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat Commun 5, (2014) – 10.1038/ncomms6713
  • Pucher, S., Liedl, C., Jin, S., Rauschenbeutel, A. & Schneeweiss, P. Atomic spin-controlled non-reciprocal Raman amplification of fibre-guided light. Nat. Photon. 16, 380–383 (2022) – 10.1038/s41566-022-00987-z
  • Coles, R. J. et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat Commun 7, (2016) – 10.1038/ncomms11183
  • Zare Rameshti, B. et al. Cavity magnonics. Physics Reports 979, 1–61 (2022) – 10.1016/j.physrep.2022.06.001
  • Yu, W., Yu, T. & Bauer, G. E. W. Circulating cavity magnon polaritons. Phys. Rev. B 102, (2020) – 10.1103/physrevb.102.064416
  • Bourhill, J. et al. Generation of Circulating Cavity Magnon Polaritons. Phys. Rev. Applied 19, (2023) – 10.1103/physrevapplied.19.014030
  • Zhang, X., Galda, A., Han, X., Jin, D. & Vinokur, V. M. Broadband Nonreciprocity Enabled by Strong Coupling of Magnons and Microwave Photons. Phys. Rev. Applied 13, (2020) – 10.1103/physrevapplied.13.044039
  • Huang, R., Miranowicz, A., Liao, J.-Q., Nori, F. & Jing, H. Nonreciprocal Photon Blockade. Phys. Rev. Lett. 121, (2018) – 10.1103/physrevlett.121.153601
  • Jiao, Y.-F. et al. Nonreciprocal Optomechanical Entanglement against Backscattering Losses. Phys. Rev. Lett. 125, (2020) – 10.1103/physrevlett.125.143605
  • Yang, Nonreciprocal transmission and nonreciprocal entanglement in a spinning microwave magnomechanical system. Ann. Phys. (Berlin) (2020)
  • Jiao, Y.-F. et al. Nonreciprocal Enhancement of Remote Entanglement between Nonidentical Mechanical Oscillators. Phys. Rev. Applied 18, (2022) – 10.1103/physrevapplied.18.064008
  • Liu, J.-X. et al. Phase-controlled asymmetric optomechanical entanglement against optical backscattering. Sci. China Phys. Mech. Astron. 66, (2023) – 10.1007/s11433-022-2043-3
  • Ren, Y. Nonreciprocal optical–microwave entanglement in a spinning magnetic resonator. Opt. Lett. 47, 1125 (2022) – 10.1364/ol.451050
  • Chen, J., Fan, X.-G., Xiong, W., Wang, D. & Ye, L. Nonreciprocal entanglement in cavity-magnon optomechanics. Phys. Rev. B 108, (2023) – 10.1103/physrevb.108.024105
  • Chakraborty, S. & Das, C. Nonreciprocal magnon-photon-phonon entanglement in cavity magnomechanics. Phys. Rev. A 108, (2023) – 10.1103/physreva.108.063704
  • Yang, Z.-B., Ming, Y., Yang, R.-C. & Liu, H.-Y. Asymmetric transmission and entanglement in a double-cavity magnomechanical system. J. Opt. Soc. Am. B 40, 822 (2023) – 10.1364/josab.481012
  • Zheng, Q., Zhong, W., Cheng, G. & Chen, A. Nonreciprocal tripartite entanglement based on magnon Kerr effect in a spinning microwave resonator. Optics Communications 546, 129796 (2023) – 10.1016/j.optcom.2023.129796
  • Zheng, Q., Zhong, W., Cheng, G. & Chen, A. Nonreciprocal microwave-optical entanglement in a magnon-based hybrid system. Journal of Applied Physics 135, (2024) – 10.1063/5.0190162
  • Chen, J., Fan, X.-G., Xiong, W., Wang, D. & Ye, L. Nonreciprocal photon-phonon entanglement in Kerr-modified spinning cavity magnomechanics. Phys. Rev. A 109, (2024) – 10.1103/physreva.109.043512
  • Yang, Z.-B. et al. Controlling Stationary One-Way Quantum Steering in Cavity Magnonics. Phys. Rev. Applied 15, (2021) – 10.1103/physrevapplied.15.024042
  • Tan, H. & Li, J. Einstein-Podolsky-Rosen entanglement and asymmetric steering between distant macroscopic mechanical and magnonic systems. Phys. Rev. Research 3, (2021) – 10.1103/physrevresearch.3.013192
  • Zhan, H., Sun, L. & Tan, H. Chirality-induced one-way quantum steering between two waveguide-mediated ferrimagnetic microspheres. Phys. Rev. B 106, (2022) – 10.1103/physrevb.106.104432
  • Guan, S.-Y., Wang, H.-F. & Yi, X. Cooperative-effect-induced one-way steering in open cavity magnonics. npj Quantum Inf 8, (2022) – 10.1038/s41534-022-00619-y
  • Zhong, W., Zheng, Q., Cheng, G. & Chen, A. Nonreciprocal genuine steering of three macroscopic samples in a spinning microwave magnonical system. Applied Physics Letters 123, (2023) – 10.1063/5.0166869
  • Xie, J., Ma, S., Ren, Y., Gao, S. & Li, F. Chiral cavity-magnonic system for the unidirectional emission of a tunable squeezed microwave field. Phys. Rev. A 108, (2023) – 10.1103/physreva.108.033701
  • Guo, Q. et al. Nonreciprocal mechanical squeezing in a spinning cavity optomechanical system via pump modulation. Phys. Rev. A 108, (2023) – 10.1103/physreva.108.033515
  • Li, B., Huang, R., Xu, X., Miranowicz, A. & Jing, H. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res. 7, 630 (2019) – 10.1364/prj.7.000630
  • Xu, X., Zhao, Y., Wang, H., Jing, H. & Chen, A. Quantum nonreciprocality in quadratic optomechanics. Photon. Res. 8, 143 (2020) – 10.1364/prj.8.000143
  • Xie, H., He, L.-W., Shang, X., Lin, G.-W. & Lin, X.-M. Nonreciprocal photon blockade in cavity optomagnonics. Phys. Rev. A 106, (2022) – 10.1103/physreva.106.053707
  • Wang, Y., Xiong, W., Xu, Z., Zhang, G.-Q. & You, J.-Q. Dissipation-induced nonreciprocal magnon blockade in a magnon-based hybrid system. Sci. China Phys. Mech. Astron. 65, (2022) – 10.1007/s11433-021-1880-7
  • Jiang, Y., Maayani, S., Carmon, T., Nori, F. & Jing, H. Nonreciprocal Phonon Laser. Phys. Rev. Applied 10, (2018) – 10.1103/physrevapplied.10.064037
  • Xu, Y., Liu, J.-Y., Liu, W. & Xiao, Y.-F. Nonreciprocal phonon laser in a spinning microwave magnomechanical system. Phys. Rev. A 103, (2021) – 10.1103/physreva.103.053501
  • Xu, Y. & Song, J. Nonreciprocal magnon laser. Opt. Lett. 46, 5276 (2021) – 10.1364/ol.440608
  • Huang, K.-W., Wu, Y. & Si, L.-G. Parametric-amplification-induced nonreciprocal magnon laser. Opt. Lett. 47, 3311 (2022) – 10.1364/ol.459917
  • Hafezi, M. & Rabl, P. Optomechanically induced non-reciprocity in microring resonators. Opt. Express 20, 7672 (2012) – 10.1364/oe.20.007672
  • Xu, X.-W., Chen, A.-X., Li, Y. & Liu, Y. Nonreciprocal single-photon frequency converter via multiple semi-infinite coupled-resonator waveguides. Phys. Rev. A 96, (2017) – 10.1103/physreva.96.053853
  • Ren, Y. et al. Nonreciprocal single-photon quantum router. Phys. Rev. A 105, (2022) – 10.1103/physreva.105.013711
  • Xie, J. et al. Nonreciprocal single-photon state conversion between microwave and optical modes in a hybrid magnonic system. New J. Phys. 25, 073009 (2023) – 10.1088/1367-2630/ace3eb
  • Wang, X., Qiu, Q.-Y., Huang, K.-W. & Xiong, H. Nonreciprocal single-photon scattering in giant-spin-ensemble–waveguide magnonics. Phys. Rev. A 108, (2023) – 10.1103/physreva.108.063715
  • Giovannetti, V. & Vitali, D. Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion. Phys. Rev. A 63, (2001) – 10.1103/physreva.63.023812
  • Vitali, D. et al. Optomechanical Entanglement between a Movable Mirror and a Cavity Field. Phys. Rev. Lett. 98, (2007) – 10.1103/physrevlett.98.030405
  • Adesso, G., Serafini, A. & Illuminati, F. Extremal entanglement and mixedness in continuous variable systems. Phys. Rev. A 70, (2004) – 10.1103/physreva.70.022318
  • Adesso, G. & Illuminati, F. Entanglement in continuous-variable systems: recent advances and current perspectives. J. Phys. A: Math. Theor. 40, 7821–7880 (2007) – 10.1088/1751-8113/40/28/s01
  • Furusawa, A. et al. Unconditional Quantum Teleportation. Science 282, 706–709 (1998) – 10.1126/science.282.5389.706
  • Fiurášek, J. Improving the fidelity of continuous-variable teleportation via local operations. Phys. Rev. A 66, (2002) – 10.1103/physreva.66.012304
  • Genes, C., Mari, A., Tombesi, P. & Vitali, D. Robust entanglement of a micromechanical resonator with output optical fields. Phys. Rev. A 78, (2008) – 10.1103/physreva.78.032316
  • Braunstein, S. L., Fuchs, C. A. & Kimble, H. J. Criteria for continuous-variable quantum teleportation. Journal of Modern Optics 47, 267–278 (2000) – 10.1080/09500340008244041
  • Yukawa, M., Benichi, H. & Furusawa, A. High-fidelity continuous-variable quantum teleportation toward multistep quantum operations. Phys. Rev. A 77, (2008) – 10.1103/physreva.77.022314
  • Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A. & Braunstein, S. L. Advances in quantum teleportation. Nature Photon 9, 641–652 (2015) – 10.1038/nphoton.2015.154
  • Hu, X.-M., Guo, Y., Liu, B.-H., Li, C.-F. & Guo, G.-C. Progress in quantum teleportation. Nat Rev Phys 5, 339–353 (2023) – 10.1038/s42254-023-00588-x
  • Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006) – 10.1038/nature05136