Nonlinear Feedback, Double-bracket Dissipation and Port Control of Lie–Poisson Systems
Authors
Abstract
Methods from controlled Lagrangians, double-bracket dissipation and interconnection and damping assignment–passivity-based control (IDA-PBC) are used to construct nonlinear feedback controls which (asymptotically) stabilize previously unstable equilibria of Lie–Poisson Hamiltonian systems. The results are applied to find an asymptotically stabilizing control for the rotor driven satellite, and a stabilizing control for Hall magnetohydrodynamic flow.
Keywords
Stabilization; Feedback control; Controlled Lagrangians; Port-Hamiltonian systems; 34H15; 37J25; 70H14; 76W05; 93D15
Citation
- Journal: Journal of Nonlinear Science
- Year: 2024
- Volume: 34
- Issue: 3
- Pages:
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00332-024-10031-9
BibTeX
@article{Hochgerner_2024,
title={{Nonlinear Feedback, Double-bracket Dissipation and Port Control of Lie–Poisson Systems}},
volume={34},
ISSN={1432-1467},
DOI={10.1007/s00332-024-10031-9},
number={3},
journal={Journal of Nonlinear Science},
publisher={Springer Science and Business Media LLC},
author={Hochgerner, Simon},
year={2024}
}
References
- Blankenstein, G., Ortega, R. & Van Der Schaft, A. J. The matching conditions of controlled Lagrangians and IDA-passivity based control. International Journal of Control vol. 75 645–665 (2002) – 10.1080/00207170210135939
- Bloch, A. M., Marsden, J. E. & Sánchez de Alvarez, G. Feedback Stabilization of Relative Equilibria for Mechanical Systems with Symmetry. Current and Future Directions in Applied Mathematics 43–64 (1997) doi:10.1007/978-1-4612-2012-1_11 – 10.1007/978-1-4612-2012-1_11
- Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E. & de Alvarez, G. S. Stabilization of rigid body dynamics by internal and external torques. Automatica vol. 28 745–756 (1992) – 10.1016/0005-1098(92)90034-d
- Bloch, A., Krishnaprasad, P. S., Marsden, J. E. & Ratiu, T. S. The Euler-Poincaré equations and double bracket dissipation. Communications in Mathematical Physics vol. 175 1–42 (1996) – 10.1007/bf02101622
- Bloch, A. M., Chang, D. E., Leonard, N. E., Marsden, J. E. & Woolsey, C. Asymptotic Stabilization of Euler-Poincaré Mechanical Systems. IFAC Proceedings Volumes vol. 33 51–56 (2000) – 10.1016/s1474-6670(17)35546-5
- Bloch, A. M., Leonard, N. E. & Marsden, J. E. Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem. IEEE Transactions on Automatic Control vol. 45 2253–2270 (2000) – 10.1109/9.895562
- Bloch, A. M., Leonard, N. E. & Marsden, J. E. Controlled Lagrangians and the stabilization of Euler–Poincaré mechanical systems. International Journal of Robust and Nonlinear Control vol. 11 191–214 (2001) – 10.1002/rnc.572
- Borja, P., Cisneros, R. & Ortega, R. A constructive procedure for energy shaping of port—Hamiltonian systems. Automatica vol. 72 230–234 (2016) – 10.1016/j.automatica.2016.05.028
- Chang, D. E. & Marsden, J. E. Reduction of Controlled Lagrangian and Hamiltonian Systems with Symmetry. SIAM Journal on Control and Optimization vol. 43 277–300 (2004) – 10.1137/s0363012902412951
- Chang, D. E., Bloch, A. M., Leonard, N. E., Marsden, J. E. & Woolsey, C. A. The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems. ESAIM: Control, Optimisation and Calculus of Variations vol. 8 393–422 (2002) – 10.1051/cocv:2002045
- Xu, C., Schuster, E., Vazquez, R. & Krstic, M. Stabilization of linearized 2D magnetohydrodynamic channel flow by backstepping boundary control. Systems & Control Letters vol. 57 805–812 (2008) – 10.1016/j.sysconle.2008.03.008
- D’Avignon, E. C., Morrison, P. J. & Lingam, M. Derivation of the Hall and extended magnetohydrodynamics brackets. Physics of Plasmas vol. 23 (2016) – 10.1063/1.4952641
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Griesse, R. & Kunisch, K. Optimal Control for a Stationary MHD System in Velocity‐Current Formulation. SIAM Journal on Control and Optimization vol. 45 1822–1845 (2006) – 10.1137/050624236
- Hameiri, E. & Torasso, R. Linear stability of static equilibrium states in the Hall-magnetohydrodynamics model. Physics of Plasmas vol. 11 4934–4945 (2004) – 10.1063/1.1784453
- Hochgerner, S. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics vol. 12 641–669 (2020) – 10.3934/jgm.2020030
- Hochgerner, S. Feedback control of charged ideal fluids. Nonlinearity vol. 34 1316–1351 (2021) – 10.1088/1361-6544/abbd83
- Holm, D. D. Hall magnetohydrodynamics: Conservation laws and Lyapunov stability. The Physics of Fluids vol. 30 1310–1322 (1987) – 10.1063/1.866246
- Holm, D. D., Marsden, J. E., Ratiu, T. & Weinstein, A. Nonlinear stability of fluid and plasma equilibria. Physics Reports vol. 123 1–116 (1985) – 10.1016/0370-1573(85)90028-6
- Holm, D. D., Schmah, T., Stoica, C. & Ellis, D. C. P. Geometric Mechanics and Symmetry. (2009) doi:10.1093/oso/9780199212903.001.0001 – 10.1093/oso/9780199212903.001.0001
- Kaltsas, D. A., Throumoulopoulos, G. N. & Morrison, P. J. Hamiltonian kinetic-Hall magnetohydrodynamics with fluid and kinetic ions in the current and pressure coupling schemes. Journal of Plasma Physics vol. 87 (2021) – 10.1017/s0022377821000994
- Krishnaprasad, P. S. Lie-Poisson structures, dual-spin spacecraft and asymptotic stability. Nonlinear Analysis: Theory, Methods & Applications vol. 9 1011–1035 (1985) – 10.1016/0362-546x(85)90083-5
- Studies on Magneto-Hydrodynamic Waves and other Anisotropic wave motions. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences vol. 252 397–430 (1960) – 10.1098/rsta.1960.0010
- Marsden, J. E., Raţiu, T. & Weinstein, A. Semidirect products and reduction in mechanics. Transactions of the American Mathematical Society vol. 281 147–177 (1984) – 10.2307/1999527
- Mehra, R., Satpute, S. G., Kazi, F. & Singh, N. M. Control of a class of underactuated mechanical systems obviating matching conditions. Automatica vol. 86 98–103 (2017) – 10.1016/j.automatica.2017.07.033
- Michor, P. W. Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach. Progress in Nonlinear Differential Equations and Their Applications 133–215 (2006) doi:10.1007/978-0-8176-4521-2_11 – 10.1007/978-0-8176-4521-2_11
- Ohsaki, S. Variational Principle of Hall Magnetohydrodynamics. Journal of Fusion Energy vol. 26 135–137 (2006) – 10.1007/s10894-006-9029-2
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Tassi, E. Formal stability in Hamiltonian fluid models for plasmas. Journal of Physics A: Mathematical and Theoretical vol. 55 413001 (2022) – 10.1088/1751-8121/ac8f76
- Vazquez, R., Schuster, E. & Krstic, M. A Closed-Form Full-State Feedback Controller for Stabilization of 3D Magnetohydrodynamic Channel Flow. Journal of Dynamic Systems, Measurement, and Control vol. 131 (2009) – 10.1115/1.3089561
- Wang, L.-S. & Krishnaprasad, P. S. Gyroscopic control and stabilization. Journal of Nonlinear Science vol. 2 367–415 (1992) – 10.1007/bf01209527