Authors

S. Torkel Glad

Abstract

This paper describes how models can be formed from the basic principles of physics and the other fields of science. Use can be made of similarities between different domains which leads to the concepts of bond graphs and, more ly, to port-controlled Hamiltonian systems. The class of models is naturally extended to differential algebraic equations (DAE) models. The concepts described here form a natural basis for parameter identification in gray box models.

Keywords

Physical modeling; Grey box model; DAE

Citation

BibTeX

@inbook{Glad_2019,
  title={{Modeling of Dynamic Systems from First Principles}},
  ISBN={9781447151029},
  DOI={10.1007/978-1-4471-5102-9_102-2},
  booktitle={{Encyclopedia of Systems and Control}},
  publisher={Springer London},
  author={Glad, S. Torkel},
  year={2019},
  pages={1--6}
}

Download the bib file

References

  • S Campbell, Applications of differential-algebraic equations (2019)
  • Modeling and control of complex physical systems: the port-Hamiltonian approach (2009)
  • Fritzson, P. Principles of Object Oriented Modeling and Simulation with Modelica 3.3. (2014) doi:10.1002/9781118989166 – 10.1002/9781118989166
  • Gerdin, M., Schön, T. B., Glad, T., Gustafsson, F. & Ljung, L. On parameter and state estimation for linear differential–algebraic equations. Automatica 43, 416–425 (2007) – 10.1016/j.automatica.2006.09.016
  • Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017
  • Ljung, L. & Glad, T. On global identifiability for arbitrary model parametrizations. Automatica 30, 265–276 (1994) – 10.1016/0005-1098(94)90029-9
  • L Ljung, Modeling and identification of dynamic systems (2016)
  • Ritt, J. Differential Algebra. Colloquium Publications (1950) doi:10.1090/coll/033 – 10.1090/coll/033
  • RC Rosenberg, Introduction to physical system dynamics (1983)
  • MM Tiller, Introduction to physical modeling with Modelica (2012)