Authors

Ze Wang, Guoyuan Qi

Abstract

In this paper, a three-terminal memristor is constructed and studied through changing dual-port output instead of one-port. A new conservative memristor-based chaotic system is built by embedding this three-terminal memristor into a newly proposed four-dimensional (4D) Euler equation. The generalized Hamiltonian energy function has been given, and it is composed of conservative and non-conservative parts of the Hamiltonian. The Hamiltonian of the Euler equation remains constant, while the three-terminal memristor’s Hamiltonian is mutative, causing non-conservation in energy. Through proof, only centers or saddles equilibria exist, which meets the definition of the conservative system. A non-Hamiltonian conservative chaotic system is proposed. The Hamiltonian of the conservative part determines whether the system can produce chaos or not. The non-conservative part affects the dynamic of the system based on the conservative part. The chaotic and quasiperiodic orbits are generated when the system has different Hamiltonian levels. Lyapunov exponent (LE), Poincaré map, bifurcation and Hamiltonian diagrams are used to analyze the dynamical behavior of the non-Hamiltonian conservative chaotic system. The frequency and initial values of the system have an extensive variable range. Through the mechanism adjustment, instead of trial-and-error, the maximum LE of the system can even reach an incredible value of 963. An analog circuit is implemented to verify the existence of the non-Hamiltonian conservative chaotic system, which overcomes the challenge that a little bias will lead to the disappearance of conservative chaos.

Citation

  • Journal: Entropy
  • Year: 2021
  • Volume: 23
  • Issue: 1
  • Pages: 71
  • Publisher: MDPI AG
  • DOI: 10.3390/e23010071

BibTeX

@article{Wang_2021,
  title={{Modeling and Analysis of a Three-Terminal-Memristor-Based Conservative Chaotic System}},
  volume={23},
  ISSN={1099-4300},
  DOI={10.3390/e23010071},
  number={1},
  journal={Entropy},
  publisher={MDPI AG},
  author={Wang, Ze and Qi, Guoyuan},
  year={2021},
  pages={71}
}

Download the bib file

References

  • Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008) – 10.1038/nature06932
  • Caravelli, F. & Carbajal, J. P. Memristors for the Curious Outsiders. Technologies 6, 118 (2018) – 10.3390/technologies6040118
  • Chua, L. Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011) – 10.1007/s00339-011-6264-9
  • Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010) – 10.1038/nature08940
  • Wang, W., Jia, X., Luo, X., Kurths, J. & Yuan, M. Fixed-time synchronization control of memristive MAM neural networks with mixed delays and application in chaotic secure communication. Chaos, Solitons & Fractals 126, 85–96 (2019) – 10.1016/j.chaos.2019.05.041
  • Miranda, E. & Suñé, J. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications. Materials 13, 938 (2020) – 10.3390/ma13040938
  • Bao, H., Hu, A., Liu, W. & Bao, B. Hidden Bursting Firings and Bifurcation Mechanisms in Memristive Neuron Model With Threshold Electromagnetic Induction. IEEE Trans. Neural Netw. Learning Syst. 31, 502–511 (2020) – 10.1109/tnnls.2019.2905137
  • Diorio, C., Hasler, P., Minch, A. & Mead, C. A. A single-transistor silicon synapse. IEEE Trans. Electron Devices 43, 1972–1980 (1996) – 10.1109/16.543035
  • Lai, Q. et al. Ionic/Electronic Hybrid Materials Integrated in a Synaptic Transistor with Signal Processing and Learning Functions. Advanced Materials 22, 2448–2453 (2010) – 10.1002/adma.201000282
  • Mouttet, B. Memristive systems analysis of 3-terminal devices. 2010 17th IEEE International Conference on Electronics, Circuits and Systems 930–933 (2010) doi:10.1109/icecs.2010.5724665 – 10.1109/icecs.2010.5724665
  • Chua, L. O. & Sung Mo Kang. Memristive devices and systems. Proc. IEEE 64, 209–223 (1976) – 10.1109/proc.1976.10092
  • Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018) – 10.1038/nature25747
  • Kapitaniak, T. et al. A New Chaotic System with Stable Equilibrium: Entropy Analysis, Parameter Estimation, and Circuit Design. Entropy 20, 670 (2018) – 10.3390/e20090670
  • David, S. A., Fischer, C. & Machado, J. A. T. Fractional electronic circuit simulation of a nonlinear macroeconomic model. AEU - International Journal of Electronics and Communications 84, 210–220 (2018) – 10.1016/j.aeue.2017.11.019
  • Ovchinnikov, I. V. & Di Ventra, M. Chaos as a symmetry-breaking phenomenon. Mod. Phys. Lett. B 33, 1950287 (2019) – 10.1142/s0217984919502877
  • Qi, G. Modelings and mechanism analysis underlying both the 4D Euler equations and Hamiltonian conservative chaotic systems. Nonlinear Dyn 95, 2063–2077 (2018) – 10.1007/s11071-018-4676-1
  • Qi, G., Hu, J. & Wang, Z. Modeling of a Hamiltonian conservative chaotic system and its mechanism routes from periodic to quasiperiodic, chaos and strong chaos. Applied Mathematical Modelling 78, 350–365 (2020) – 10.1016/j.apm.2019.08.023
  • Qi, G. & Hu, J. Modelling of both energy and volume conservative chaotic systems and their mechanism analyses. Communications in Nonlinear Science and Numerical Simulation 84, 105171 (2020) – 10.1016/j.cnsns.2020.105171
  • Frederickson, P., Kaplan, J. L., Yorke, E. D. & Yorke, J. A. The liapunov dimension of strange attractors. Journal of Differential Equations 49, 185–207 (1983) – 10.1016/0022-0396(83)90011-6
  • MUTHUSWAMY, B. IMPLEMENTING MEMRISTOR BASED CHAOTIC CIRCUITS. Int. J. Bifurcation Chaos 20, 1335–1350 (2010) – 10.1142/s0218127410026514
  • ITOH, M. & CHUA, L. O. MEMRISTOR OSCILLATORS. Int. J. Bifurcation Chaos 18, 3183–3206 (2008) – 10.1142/s0218127408022354
  • Feng, Y. et al. A new hidden attractor hyperchaotic memristor oscillator with a line of equilibria. Eur. Phys. J. Spec. Top. 229, 1279–1288 (2020) – 10.1140/epjst/e2020-900097-0
  • Lu, H. et al. Fracmemristor chaotic oscillator with multistable and antimonotonicity properties. Journal of Advanced Research 25, 137–145 (2020) – 10.1016/j.jare.2020.05.025
  • Biolek, Z., Biolek, D., Biolkova, V. & Kolka, Z. All Pinched Hysteresis Loops Generated by (α, β) Elements: in What Coordinates They May be Observable. IEEE Access 8, 199179–199186 (2020) – 10.1109/access.2020.3034802
  • Biolek, Z., Biolek, D., Biolková, V. & Kolka, Z. Higher-Order Hamiltonian for Circuits with (α,β) Elements. Entropy 22, 412 (2020) – 10.3390/e22040412
  • Tenreiro Machado, J. A. & Lopes, A. M. Multidimensional scaling locus of memristor and fractional order elements. Journal of Advanced Research 25, 147–157 (2020) – 10.1016/j.jare.2020.01.004
  • Deng, Y. & Li, Y. A memristive conservative chaotic circuit consisting of a memristor and a capacitor. Chaos: An Interdisciplinary Journal of Nonlinear Science 30, (2020) – 10.1063/1.5128384
  • Advances in Memristors, Memristive Devices and Systems. Studies in Computational Intelligence (Springer International Publishing, 2017). doi:10.1007/978-3-319-51724-7 – 10.1007/978-3-319-51724-7
  • Yuan, F., Jin, Y. & Li, Y. Self-reproducing chaos and bursting oscillation analysis in a meminductor-based conservative system. Chaos: An Interdisciplinary Journal of Nonlinear Science 30, (2020) – 10.1063/5.0008313
  • Chua, L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971) – 10.1109/tct.1971.1083337
  • Bo-Cheng, B., Zhong, L. & Jian-Ping, X. Transient chaos in smooth memristor oscillator. Chinese Phys. B 19, 030510 (2010) – 10.1088/1674-1056/19/3/030510
  • Faradja, P. & Qi, G. Hamiltonian-Based Energy Analysis for Brushless DC Motor Chaotic System. Int. J. Bifurcation Chaos 30, 2050112 (2020) – 10.1142/s0218127420501126
  • Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena 16, 285–317 (1985) – 10.1016/0167-2789(85)90011-9