Authors

Dongmei Liu, Liu Liu, Yufeng Lu

Abstract

In this paper, an extended model for boundary control systems is given. The model is used to solve the LQ-optimal control problem for boundary control systems. It is shown that there exists an equivalent relationship between the LQ-optimal control of boundary control systems and the output optimal control of the extended models. These results are applied to the port-Hamiltonian systems.

Keywords

Boundary control systems; LQ-optimal control; Output optimal control; Port-Hamiltonian systems

Citation

  • Journal: Iranian Journal of Science and Technology, Transactions of Electrical Engineering
  • Year: 2020
  • Volume: 44
  • Issue: 1
  • Pages: 403–412
  • Publisher: Springer Science and Business Media LLC
  • DOI: 10.1007/s40998-019-00222-6

BibTeX

@article{Liu_2019,
  title={{LQ-Optimal Control of Boundary Control Systems}},
  volume={44},
  ISSN={2364-1827},
  DOI={10.1007/s40998-019-00222-6},
  number={1},
  journal={Iranian Journal of Science and Technology, Transactions of Electrical Engineering},
  publisher={Springer Science and Business Media LLC},
  author={Liu, Dongmei and Liu, Liu and Lu, Yufeng},
  year={2019},
  pages={403--412}
}

Download the bib file

References

  • Aksikas, I., Fuxman, A., Forbes, J. F. & Winkin, J. J. LQ control design of a class of hyperbolic PDE systems: Application to fixed-bed reactor. Automatica vol. 45 1542–1548 (2009) – 10.1016/j.automatica.2009.02.017
  • Alizadeh Moghadam, A., Aksikas, I., Dubljevic, S. & Forbes, J. F. Boundary optimal (LQ) control of coupled hyperbolic PDEs and ODEs. Automatica vol. 49 526–533 (2013) – 10.1016/j.automatica.2012.11.016
  • CUI, P.-L. Fusion and Estimation of Dynamic Multiscale System Based on M-Band Wavelet. ACTA AUTOMATICA SINICA vol. 33 0021 (2007) – 10.1360/aas-007-0021
  • Cui, P., Zhang, C., Zhang, H. & Zhao, H. Indefinite linear quadratic optimal control problem for singular discrete-time system with multiple input delays. Automatica vol. 45 2458–2461 (2009) – 10.1016/j.automatica.2009.06.018
  • Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
  • Datko, R. Unconstrained Control Problems with Quadratic Cost. SIAM Journal on Control vol. 11 32–52 (1973) – 10.1137/0311003
  • Dehaye, J. R. & Winkin, J. J. Boundary Control Systems with Yosida Type Approximate Boundary Observation. IFAC Proceedings Volumes vol. 46 233–238 (2013) – 10.3182/20130925-3-fr-4043.00061
  • Dehaye, J. R. & Winkin, J. J. LQ-optimal control by spectral factorization of extended semigroup boundary control systems with approximate boundary observation. 52nd IEEE Conference on Decision and Control 1071–1076 (2013) doi:10.1109/cdc.2013.6760024 – 10.1109/cdc.2013.6760024
  • Dehaye, J. R. & Winkin, J. J. LQ-optimal boundary control of infinite-dimensional systems with Yosida-type approximate boundary observation. Automatica vol. 67 94–106 (2016) – 10.1016/j.automatica.2015.12.033
  • K Engel. Engel K, Nagel R (2006) A short course on operator semigroups. Springer, New York (2006)
  • Fattorini, H. O. Boundary Control Systems. SIAM Journal on Control vol. 6 349–385 (1968) – 10.1137/0306025
  • Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-110.1007/978-3-0348-0399-1
  • NN Krasovskii. Krasovskii NN (1962) On analytical design of optimum regulators in time-delay systems. Prikl Mat Mekh 1:39–52 (1962)
  • E Kreyszig. Kreyszig E (1978) Introductory functional analysis with applications. Wiley, New York (1978)
  • Lions JL (1966) Sur le côntrole optimal de systemes decrits par des equations aux derivees partielles lineaires. CR Acad Sci Paris 263, pp. 661–663, 713–715, 776–779
  • JL Lions. Lions JL (1968) Contrôle optimal de systemes gouvernes par des equations and derivees partielles. Dunod, Paris (1968)
  • JL Lions. Lions JL, Magenes E (1972) Non-homogeneous boundary value problem, I,II,III, Springer, Berlin (1972)
  • Lukes, D. L. & Russell, D. L. The Quadratic Criterion for Distributed Systems. SIAM Journal on Control vol. 7 101–121 (1969) – 10.1137/0307008
  • Merola, A., Cosentino, C., Colacino, D. & Amato, F. Optimal control of uncertain nonlinear quadratic systems. Automatica vol. 83 345–350 (2017) – 10.1016/j.automatica.2017.05.012
  • Opmeer MR (2006) Model reduction for controller design for infinite-dimensional systems. Doctoral Thesis, University of Bath
  • Prichard AJ (1969) Stability and control of distributed systems. In: Proceedings of IEEE, pp. 1433–1438
  • Rabiei, K. & Ordokhani, Y. Boubaker hybrid functions and their application to solve fractional optimal control and fractional variational problems. Applications of Mathematics vol. 63 541–567 (2018) – 10.21136/am.2018.0083-18
  • Rabiei, K., Ordokhani, Y. & Babolian, E. The Boubaker polynomials and their application to solve fractional optimal control problems. Nonlinear Dynamics vol. 88 1013–1026 (2016) – 10.1007/s11071-016-3291-2
  • Rabiei, K., Ordokhani, Y. & Babolian, E. Fractional-order Boubaker functions and their applications in solving delay fractional optimal control problems. Journal of Vibration and Control vol. 24 3370–3383 (2017) – 10.1177/1077546317705041
  • Rabiei, K., Ordokhani, Y. & Babolian, E. Fractional-Order Legendre Functions and Their Application to Solve Fractional Optimal Control of Systems Described by Integro-differential Equations. Acta Applicandae Mathematicae vol. 158 87–106 (2018) – 10.1007/s10440-018-0175-0
  • Staffans, O. Well-Posed Linear Systems. (2005) doi:10.1017/cbo9780511543197 – 10.1017/cbo9780511543197