Authors

Jonas Kirchhoff

Abstract

The new concept of relative generic subsets is introduced. It is shown that the set of controllable linear finite-dimensional port-Hamiltonian systems is a relative generic subset of the set of all linear finite-dimensional port-Hamiltonian systems. This implies that a random, continuously distributed port-Hamiltonian system is almost surely controllable.

Citation

  • Journal: IEEE Transactions on Automatic Control
  • Year: 2022
  • Volume: 67
  • Issue: 6
  • Pages: 3220–3222
  • Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  • DOI: 10.1109/tac.2021.3098176

BibTeX

@article{Kirchhoff_2022,
  title={{Linear Port-Hamiltonian Systems Are Generically Controllable}},
  volume={67},
  ISSN={2334-3303},
  DOI={10.1109/tac.2021.3098176},
  number={6},
  journal={IEEE Transactions on Automatic Control},
  publisher={Institute of Electrical and Electronics Engineers (IEEE)},
  author={Kirchhoff, Jonas},
  year={2022},
  pages={3220--3222}
}

Download the bib file

References

  • Wonham, W. M. Linear Multivariable Control. (Springer New York, 1985). doi:10.1007/978-1-4612-1082-5 – 10.1007/978-1-4612-1082-5
  • Sontag. Mathematical Systems Theory: Deterministic Finite Dimensional Systems (1998)
  • Federer. Geometric Measure Theory (1969)
  • Bhatia, R., Elsner, L. & Krause, G. Bounds for the variation of the roots of a polynomial and the eigenvalues of a matrix. Linear Algebra and its Applications vol. 142 195–209 (1990) – 10.1016/0024-3795(90)90267-g