Linear Port-Hamiltonian Systems Are Generically Controllable
Authors
Abstract
The new concept of relative generic subsets is introduced. It is shown that the set of controllable linear finite-dimensional port-Hamiltonian systems is a relative generic subset of the set of all linear finite-dimensional port-Hamiltonian systems. This implies that a random, continuously distributed port-Hamiltonian system is almost surely controllable.
Citation
- Journal: IEEE Transactions on Automatic Control
- Year: 2022
- Volume: 67
- Issue: 6
- Pages: 3220–3222
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tac.2021.3098176
BibTeX
@article{Kirchhoff_2022,
title={{Linear Port-Hamiltonian Systems Are Generically Controllable}},
volume={67},
ISSN={2334-3303},
DOI={10.1109/tac.2021.3098176},
number={6},
journal={IEEE Transactions on Automatic Control},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Kirchhoff, Jonas},
year={2022},
pages={3220--3222}
}
References
- Wonham, W. M. Linear Multivariable Control. (Springer New York, 1985). doi:10.1007/978-1-4612-1082-5 – 10.1007/978-1-4612-1082-5
- Sontag. Mathematical Systems Theory: Deterministic Finite Dimensional Systems (1998)
- Federer. Geometric Measure Theory (1969)
- Bhatia, R., Elsner, L. & Krause, G. Bounds for the variation of the roots of a polynomial and the eigenvalues of a matrix. Linear Algebra and its Applications vol. 142 195–209 (1990) – 10.1016/0024-3795(90)90267-g