Authors

Jiayi Liu, Huihui Song, Zian Zhao, Josep M. Guerrero, Yanbin Qu

Abstract

This paper proposes an L2-gain disturbance attenuation-based decentralized secondary control for frequency regulation and accurate active power sharing in autonomous microgrids. Such as the randomness of distributed generations (DGs) and uncertainty in load behaviors, the proposed decentralized secondary control can effectively suppress a kind of disturbance of the outside world, so that robustness and asymptotical stability of the microgrid can be achieved. Unlike most of the existing works, a systematic approach of secondary control design is introduced based on the L2- gain disturbance attenuation theory by translating the microgrid system to the Port-controlled Kuramoto-Hamiltonian system. Only needing to be implemented using purely local information, the proposed decentralized secondary control can restore the frequency immediately following the disturbance in the microgrid without the need for event-detection and time-dependent protocol. Finally, the stability analysis is provided and the simulation results are presented to verify control performance under rapid load changes and flexibility during plug-and-play operations.

Citation

  • Journal: 2022 34th Chinese Control and Decision Conference (CCDC)
  • Year: 2022
  • Volume:
  • Issue:
  • Pages: 3162–3167
  • Publisher: IEEE
  • DOI: 10.1109/ccdc55256.2022.10033548

BibTeX

@inproceedings{Liu_2022,
  title={{L2-Gain Disturbance Attenuation-Based Decentralized Secondary Frequency Control in Autonomous Microgrids}},
  DOI={10.1109/ccdc55256.2022.10033548},
  booktitle={{2022 34th Chinese Control and Decision Conference (CCDC)}},
  publisher={IEEE},
  author={Liu, Jiayi and Song, Huihui and Zhao, Zian and Guerrero, Josep M. and Qu, Yanbin},
  year={2022},
  pages={3162--3167}
}

Download the bib file

References

  • Lasseter, R. H. MicroGrids. 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309) vol. 1 305–308 – 10.1109/pesw.2002.985003
  • Olivares, D. E. et al. Trends in Microgrid Control. IEEE Trans. Smart Grid 5, 1905–1919 (2014) – 10.1109/tsg.2013.2295514
  • Lopes, J. A. P., Moreira, C. L. & Madureira, A. G. Defining Control Strategies for MicroGrids Islanded Operation. IEEE Trans. Power Syst. 21, 916–924 (2006) – 10.1109/tpwrs.2006.873018
  • Guerrero, J. M., Vasquez, J. C., Matas, J., de Vicuna, L. G. & Castilla, M. Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization. IEEE Trans. Ind. Electron. 58, 158–172 (2011) – 10.1109/tie.2010.2066534
  • Han, H. et al. Review of Power Sharing Control Strategies for Islanding Operation of AC Microgrids. IEEE Trans. Smart Grid 7, 200–215 (2016) – 10.1109/tsg.2015.2434849
  • Etemadi, A. H., Davison, E. J. & Iravani, R. A Decentralized Robust Control Strategy for Multi-DER Microgrids—Part I: Fundamental Concepts. IEEE Trans. Power Delivery 27, 1843–1853 (2012) – 10.1109/tpwrd.2012.2202920
  • Tsikalakis, A. G. & Hatziargyriou, N. D. Centralized Control for Optimizing Microgrids Operation. IEEE Trans. On Energy Conversion 23, 241–248 (2008) – 10.1109/tec.2007.914686
  • Tan, K. T., Peng, X. Y., So, P. L., Chu, Y. C. & Chen, M. Z. Q. Centralized Control for Parallel Operation of Distributed Generation Inverters in Microgrids. IEEE Trans. Smart Grid 3, 1977–1987 (2012) – 10.1109/tsg.2012.2205952
  • Simpson-Porco, J. W. et al. Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging. IEEE Trans. Ind. Electron. 62, 7025–7038 (2015) – 10.1109/tie.2015.2436879
  • Liu, J., Li, J., Song, H., Nawaz, A. & Qu, Y. Nonlinear Secondary Voltage Control of Islanded Microgrid via Distributed Consistency. IEEE Trans. Energy Convers. 35, 1964–1972 (2020) – 10.1109/tec.2020.2998897
  • Sadabadi, M. S. Line-Independent Plug-and-Play Voltage Stabilization and ℒ₂ Gain Performance of DC Microgrids. IEEE Control Syst. Lett. 5, 1609–1614 (2021) – 10.1109/lcsys.2020.3041335
  • Lou, G. et al. Decentralised secondary voltage and frequency control scheme for islanded microgrid based on adaptive state estimator. IET Generation Trans & Dist 11, 3683–3693 (2017) – 10.1049/iet-gtd.2016.1910
  • Xin, H., Zhang, L., Wang, Z., Gan, D. & Wong, K. P. Control of Island AC Microgrids Using a Fully Distributed Approach. IEEE Trans. Smart Grid 6, 943–945 (2015) – 10.1109/tsg.2014.2378694
  • Hua, M., Hu, H., Xing, Y. & Guerrero, J. M. Multilayer Control for Inverters in Parallel Operation Without Intercommunications. IEEE Trans. Power Electron. 27, 3651–3663 (2012) – 10.1109/tpel.2012.2186985
  • Yazdanian, M. & Mehrizi-Sani, A. Washout Filter-Based Power Sharing. IEEE Trans. Smart Grid 1–2 (2015) doi:10.1109/tsg.2015.2497964 – 10.1109/tsg.2015.2497964
  • Li, P., Wang, X., Lee, W.-J. & Xu, D. Dynamic Power Conditioning Method of Microgrid Via Adaptive Inverse Control. IEEE Trans. Power Delivery 30, 906–913 (2015) – 10.1109/tpwrd.2014.2323083
  • Liu, B., Wu, T., Liu, Z. & Liu, J. A Small-AC-Signal Injection-Based Decentralized Secondary Frequency Control for Droop-Controlled Islanded Microgrids. IEEE Trans. Power Electron. 35, 11634–11651 (2020) – 10.1109/tpel.2020.2983878
  • Rey, J. M., Marti, P., Velasco, M., Miret, J. & Castilla, M. Secondary Switched Control With no Communications for Islanded Microgrids. IEEE Trans. Ind. Electron. 64, 8534–8545 (2017) – 10.1109/tie.2017.2703669
  • Khayat, Y. et al. Decentralized Optimal Frequency Control in Autonomous Microgrids. IEEE Trans. Power Syst. 34, 2345–2353 (2019) – 10.1109/tpwrs.2018.2889671
  • HaesAlhelou, H. et al. Decentralized Stochastic Disturbance Observer-Based Optimal Frequency Control Method for Interconnected Power Systems With High Renewable Shares. IEEE Trans. Ind. Inf. 18, 3180–3192 (2022) – 10.1109/tii.2021.3107396
  • Vafamand, N., Arefi, M. M., Asemani, M. H. & Dragicevic, T. Decentralized Robust Disturbance-Observer Based LFC of Interconnected Systems. IEEE Trans. Ind. Electron. 69, 4814–4823 (2022) – 10.1109/tie.2021.3078352
  • Simpson-Porco, J. W., Dörfler, F. & Bullo, F. Synchronization and power sharing for droop-controlled inverters in islanded microgrids. Automatica 49, 2603–2611 (2013) – 10.1016/j.automatica.2013.05.018
  • Zhang, H., Du, X., Liu, J., Kim, H.-M. & Song, H. Graph theory-based approach for stability analysis of stochastic coupled oscillators system by energy-based synchronization control. Journal of the Franklin Institute 357, 7581–7596 (2020) – 10.1016/j.jfranklin.2020.05.022
  • Mohamed, Y. & El-Saadany, E. F. Adaptive Decentralized Droop Controller to Preserve Power Sharing Stability of Paralleled Inverters in Distributed Generation Microgrids. IEEE Trans. Power Electron. 23, 2806–2816 (2008) – 10.1109/tpel.2008.2005100
  • Pogaku, N., Prodanovic, M. & Green, T. C. Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based Microgrid. IEEE Trans. Power Electron. 22, 613–625 (2007) – 10.1109/tpel.2006.890003