Authors

Yonghao Gui, Chunghun Kim, Chung Choo Chung

Abstract

This paper presents a nonlinear feedback controller for a permanent-magnet synchronous generator (PMSG) wind turbine system based on port-controlled Hamiltonian system. For the simplification, this work focuses on the nonlinear control law of the grid side converter (GSC) that is directly connected to the grid and affected during network disturbances. The proposed controller is designed through the analysis of PMSG GSC model from the passivity viewpoint in order to regulate the reference of the DC voltage and track the reference of the reactive current. The exponential stability of the equilibrium point of the error dynamics at the origin is guaranteed by using Lyapunov theory. Finally, the proposed method is validated through simulation. The simulation results show that the performance has smaller overshoot and faster convergence when the proposed method is used than when the conventional method is used.

Keywords

Exponential stability; passivity; port-controlled Hamiltonian system; PMSG wind turbine

Citation

  • Journal: International Journal of Control, Automation and Systems
  • Year: 2016
  • Volume: 14
  • Issue: 5
  • Pages: 1195–1204
  • Publisher: Springer Science and Business Media LLC
  • DOI: 10.1007/s12555-014-0480-y

BibTeX

@article{Gui_2016,
  title={{Improved low-voltage ride through capability for PMSG wind turbine based on port-controlled hamiltonian system}},
  volume={14},
  ISSN={2005-4092},
  DOI={10.1007/s12555-014-0480-y},
  number={5},
  journal={International Journal of Control, Automation and Systems},
  publisher={Springer Science and Business Media LLC},
  author={Gui, Yonghao and Kim, Chunghun and Chung, Chung Choo},
  year={2016},
  pages={1195--1204}
}

Download the bib file

References

  • Wind Power in Power Systems. (2012) doi:10.1002/9781119941842 – 10.1002/9781119941842
  • GWEC, Global wind report annual market update 2012 (2012)
  • L. Pao, Proc. of American Control Conference (2009)
  • Wu, Z.-Q., Yang, Y. & Xu, C.-H. Adaptive fault diagnosis and active tolerant control for wind energy conversion system. Int. J. Control Autom. Syst. 13, 120–125 (2014) – 10.1007/s12555-013-0148-z
  • Kim, S.-K., Son, S.-Y. & Lee, Y. I. Use of model predictive controller in dual-loop control of three-phase PWM AC/DC converter. Int. J. Control Autom. Syst. 12, 340–348 (2014) – 10.1007/s12555-013-0278-3
  • Blaabjerg, F., Liserre, M. & Ma, K. Power Electronics Converters for Wind Turbine Systems. IEEE Trans. on Ind. Applicat. 48, 708–719 (2012) – 10.1109/tia.2011.2181290
  • Liserre, M., Cardenas, R., Molinas, M. & Rodriguez, J. Overview of Multi-MW Wind Turbines and Wind Parks. IEEE Trans. Ind. Electron. 58, 1081–1095 (2011) – 10.1109/tie.2010.2103910
  • Tsili, M. & Papathanassiou, S. A review of grid code technical requirements for wind farms. IET Renew. Power Gener. 3, 308–332 (2009) – 10.1049/iet-rpg.2008.0070
  • Saccomando, G., Svensson, J. & Sannino, A. Improving voltage disturbance rejection for variable-speed wind turbines. IEEE Trans. On Energy Conversion 17, 422–428 (2002) – 10.1109/tec.2002.801989
  • Mullane, A., Lightbody, G. & Yacamini, R. Wind-Turbine Fault Ride-Through Enhancement. IEEE Trans. Power Syst. 20, 1929–1937 (2005) – 10.1109/tpwrs.2005.857390
  • Matas, J., Castilla, M., Guerrero, J. M., de Vicuna, L. G. & Miret, J. Feedback Linearization Of Direct-Drive Synchronous Wind-Turbines Via a Sliding Mode Approach. IEEE Trans. Power Electron. 23, 1093–1103 (2008) – 10.1109/tpel.2008.921192
  • Kim, K.-H., Jeung, Y.-C., Lee, D.-C. & Kim, H.-G. LVRT Scheme of PMSG Wind Power Systems Based on Feedback Linearization. IEEE Trans. Power Electron. 27, 2376–2384 (2012) – 10.1109/tpel.2011.2171999
  • Isidori, A. Nonlinear Control Systems. Communications and Control Engineering (Springer London, 1995). doi:10.1007/978-1-84628-615-5 – 10.1007/978-1-84628-615-5
  • Sira-Ramirez, H., Perez-Moreno, R. A., Ortega, R. & Garcia-Esteban, M. Passivity-based controllers for the stabilization of Dc-to-Dc Power converters. Automatica 33, 499–513 (1997) – 10.1016/s0005-1098(96)00207-5
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002)10.1016/s0005-1098(01)00278-3
  • Lee, T.-S. Lagrangian Modeling and Passivity-Based Control of Three-Phase AC/DC Voltage-Source Converters. IEEE Trans. Ind. Electron. 51, 892–902 (2004) – 10.1109/tie.2004.831753
  • Y. Gui, Proc. of IEEE Power and Energy Society General Meeting (2012)
  • Y. Gui, Proc. IEEE Conference on Decision and Control (2012)
  • Y. Gui, Proc. IEEE Conference on Desicion and Control (2013)
  • Chinchilla, M., Arnaltes, S. & Burgos, J. C. Control of Permanent-Magnet Generators Applied to Variable-Speed Wind-Energy Systems Connected to the Grid. IEEE Trans. On Energy Conversion 21, 130–135 (2006) – 10.1109/tec.2005.853735
  • X.-P. Yang, Proc. of IEEE Asia-Pacific Power and Energy Engineering Conference (2009)
  • Singh, M. & Santoso, S. Dynamic Models for Wind Turbines and Wind Power Plants. http://dx.doi.org/10.2172/1028524 (2011) doi:10.2172/1028524 – 10.2172/1028524
  • Conroy, J. F. & Watson, R. Low-voltage ride-through of a full converter wind turbine with permanent magnet generator. IET Renew. Power Gener. 1, 182–189 (2007) – 10.1049/iet-rpg:20070033