IDA-PB control design for VSC-HVDC transmission based on PCHD model
Authors
Xinming Fan, Lin Guan, Chengjun Xia, Tianyao Ji
Abstract
An interconnection and damping assignment passivity-based (IDA-PB) control design is proposed to improve the dynamic performance of voltage source converter high-voltage direct current (VSC-HVDC) system. The port-controlled Hamiltonian with dissipation (PCHD) model for voltage source converter (VSC) is developed according to the PCHD equation, and the strict passivity of the PCHD model is proved. On the basis of the PCHD model, a desired energy function is constructed by assigning interconnection and damping matrix and used as Lyapunov function. Then the IDA-PB control is designed according to desired equilibrium point, state variables, and IDA-PB control principle. By using this type of controller, the influence of the equivalent resistance of the VSC direct current side on the VSC-HVDC system is eliminated. The effectiveness of the proposed IDA-PB control is demonstrated through simulation studies on a two-terminal VSC-HVDC system by PSCAD/EMTDC software. The simulation results show that the controller has significant contribution to improve the dynamic behavior of the VSC-HVDC system under a variety of operation conditions. Copyright © 2014 John Wiley & Sons, Ltd.
Citation
- Journal: International Transactions on Electrical Energy Systems
- Year: 2015
- Volume: 25
- Issue: 10
- Pages: 2133–2143
- Publisher: Hindawi Limited
- DOI: 10.1002/etep.1953
BibTeX
@article{Fan_2014,
title={{IDA-PB control design for VSC-HVDC transmission based on PCHD model: IDA-PB CONTROL OF VSC-HVDC TRANSMISSION}},
volume={25},
ISSN={2050-7038},
DOI={10.1002/etep.1953},
number={10},
journal={International Transactions on Electrical Energy Systems},
publisher={Hindawi Limited},
author={Fan, Xinming and Guan, Lin and Xia, Chengjun and Ji, Tianyao},
year={2014},
pages={2133--2143}
}
References
- Flourentzou, N., Agelidis, V. G. & Demetriades, G. D. VSC-Based HVDC Power Transmission Systems: An Overview. IEEE Trans. Power Electron. 24, 592–602 (2009) – 10.1109/tpel.2008.2008441
- Sanjari, M. J., Alizadeh Mousavi, O. & Gharehpetian, G. B. Assessing the risk of blackout in the power system including HVDC and FACTS devices. Int. Trans. Electr. Energ. Syst. 23, 109–121 (2012) – 10.1002/etep.1619
- Muyeen, S. M., Takahashi, R. & Tamura, J. Operation and Control of HVDC-Connected Offshore Wind Farm. IEEE Trans. Sustain. Energy 1, 30–37 (2010) – 10.1109/tste.2010.2041561
- Van Hertem, D. & Ghandhari, M. Multi-terminal VSC HVDC for the European supergrid: Obstacles. Renewable and Sustainable Energy Reviews 14, 3156–3163 (2010) – 10.1016/j.rser.2010.07.068
- Van Eeckhout, B., Van Hertem, D., Reza, M., Srivastava, K. & Belmans, R. Economic comparison of VSC HVDC and HVAC as transmission system for a 300 MW offshore wind farm. Int Trans Elec Energy Syst 20, 661–671 (2009) – 10.1002/etep.359
- Moharana, A. & Dash, P. K. Input-Output Linearization and Robust Sliding-Mode Controller for the VSC-HVDC Transmission Link. IEEE Trans. Power Delivery 25, 1952–1961 (2010) – 10.1109/tpwrd.2010.2042469
- Latorre, H. F. & Ghandhari, M. Improvement of power system stability by using a VSC-HVdc. International Journal of Electrical Power & Energy Systems 33, 332–339 (2011) – 10.1016/j.ijepes.2010.08.030
- Zhang, Interconnection of two very weak AC systems by VSC-HVDC links using power synchronization control. IEEE Transactions on Power Systems (2011)
- Fan, Constant active power and frequency auxiliary control for multilevel VSC-HVDC power transmission. Power System Technology (2012)
- Guoqiang, W., Zhixin, W. & Shuang, L. Simulation study of a modular multilevel high‐voltage direct current based on voltage source converter system for an offshore wind farm. Int Trans Elec Energy Syst 22, 1161–1175 (2011) – 10.1002/etep.638
- Banaei, M. R. & Taheri, N. An adaptive neural damping controller for HVDC transmission systems. Euro. Trans. Electr. Power 21, 910–923 (2010) – 10.1002/etep.485
- Li, S., Haskew, T. A. & Xu, L. Control of HVDC Light System Using Conventional and Direct Current Vector Control Approaches. IEEE Trans. Power Electron. 25, 3106–3118 (2010) – 10.1109/tpel.2010.2087363
- Li, PID neural network sliding-mode controller for three-level offshore wind power VSC-HVDC converter. Proceedings of the CSEE (2012)
-
502 Bad Gateway 502 Bad Gateway
cloudflare - Lee, T.-S. Lagrangian Modeling and Passivity-Based Control of Three-Phase AC/DC Voltage-Source Converters. IEEE Trans. Ind. Electron. 51, 892–902 (2004) – 10.1109/tie.2004.831753
- Sandoval, G., Miranda, H., Espinosa–Pérez, G. & Cárdenas, V. Passivity-based control of an asymmetric nine-level inverter for harmonic current mitigation. IET Power Electron. 5, 237–247 (2012) – 10.1049/iet-pel.2010.0131
- Batlle, C., Dòria-Cerezo, A., Espinosa-Pérez, G. & Ortega, R. Simultaneous interconnection and damping assignment passivity-based control: the induction machine case study. International Journal of Control 82, 241–255 (2009) – 10.1080/00207170802050817
- Sun, Nonlinear Robustness Control of Power System (2007)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 53, 2527–2542 (2008) – 10.1109/tac.2008.2006930