Authors

F. Achleitner, A. Arnold, V. Mehrmann, E.A. Nigsch

Abstract

The concept of hypocoercivity for linear evolution equations with dissipation is discussed and equivalent characterizations that were developed for the finite-dimensional case are extended to separable Hilbert spaces. Using the concept of a hypocoercivity index, quantitative estimates on the short-time and long-time decay behavior of a hypocoercive system are derived. As a useful tool for analyzing the structural properties, an infinite-dimensional staircase form is also derived and connections to linear systems and control theory are presented. Several examples illustrate the new concepts and the results are applied to the Lorentz kinetic equation.

Keywords

Hypocoercivity (index); Dissipative evolution system; Decay rate; Staircase form

Citation

  • Journal: Journal of Functional Analysis
  • Year: 2025
  • Volume: 288
  • Issue: 2
  • Pages: 110691
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.jfa.2024.110691

BibTeX

@article{Achleitner_2025,
  title={{Hypocoercivity in Hilbert spaces}},
  volume={288},
  ISSN={0022-1236},
  DOI={10.1016/j.jfa.2024.110691},
  number={2},
  journal={Journal of Functional Analysis},
  publisher={Elsevier BV},
  author={Achleitner, F. and Arnold, A. and Mehrmann, V. and Nigsch, E.A.},
  year={2025},
  pages={110691}
}

Download the bib file

References

  • Achleitner, On linear hypocoercive BGK models. (2016)
  • Achleitner, F. et al. On multi-dimensional hypocoercive BGK models. Kinetic & Related Models vol. 11 953–1009 (2018) – 10.3934/krm.2018038
  • Achleitner, F., Arnold, A. & Carlen, E. A. The hypocoercivity index for the short time behavior of linear time-invariant ODE systems. Journal of Differential Equations vol. 371 83–115 (2023) – 10.1016/j.jde.2023.06.027
  • Achleitner, Hypocoercivity and controllability in linear semi-dissipative Hamiltonian ordinary differential equations and differential-algebraic equations. Z. Angew. Math. Mech. (2021)
  • Achleitner, Hypocoercivity and hypocontractivity concepts for linear dynamical systems. Electron. J. Linear Algebra (2023)
  • Achleitner, Hypocoercivity in algebraically constrained partial differential equations with application to Oseen equations. J. Dyn. Differ. Equ. (2023)
  • Achleitner, On optimal decay estimates for ODEs and PDEs with modal decomposition. (2019)
  • Arnold, A., Einav, A., Signorello, B. & Wöhrer, T. Large Time Convergence of the Non-homogeneous Goldstein-Taylor Equation. Journal of Statistical Physics vol. 182 (2021) – 10.1007/s10955-021-02702-8
  • Arnold,
  • Arnold, Sharpening of decay rates in Fourier based hypocoercivity methods. (2021)
  • Bensoussan, Representation and control of infinite dimensional systems. (2007)
  • Berger, Controllability of linear differential-algebraic systems — a survey. (2013)
  • Bouin, E., Dolbeault, J., Mischler, S., Mouhot, C. & Schmeiser, C. Hypocoercivity without confinement. Pure and Applied Analysis vol. 2 203–232 (2020) – 10.2140/paa.2020.2.203
  • Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. (Springer New York, 2011). doi:10.1007/978-0-387-70914-7 – 10.1007/978-0-387-70914-7
  • Conway, A Course in Functional Analysis. (1990)
  • Curtain, Introduction to Infinite-Dimensional Systems Theory. A State-Space Approach. (2020)
  • Curtain, Infinite Dimensional Linear Systems Theory. (1978)
  • Davies, Linear Operators and Their Spectra. (2007)
  • Deimling, (1985)
  • Desvillettes, L. & Salvarani, F. Asymptotic behavior of degenerate linear transport equations. Bulletin des Sciences Mathématiques vol. 133 848–858 (2009) – 10.1016/j.bulsci.2008.09.001
  • Dolbeault, J., Mouhot, C. & Schmeiser, C. Hypocoercivity for linear kinetic equations conserving mass. Transactions of the American Mathematical Society vol. 367 3807–3828 (2015) – 10.1090/s0002-9947-2015-06012-7
  • Dunford, Linear Operators. I. General Theory. (1958)
  • Edmunds, (2018)
  • Engel, One-Parameter Semigroups for Linear Evolution Equations. (2000)
  • Filbet, F., Mouhot, C. & Pareschi, L. Solving the Boltzmann Equation in N log2N. SIAM Journal on Scientific Computing vol. 28 1029–1053 (2006) – 10.1137/050625175
  • Fuhrmann, P. A. On weak and strong reachability and controllability of infinite-dimensional linear systems. Journal of Optimization Theory and Applications vol. 9 77–89 (1972) – 10.1007/bf00932345
  • Gadat, S. & Miclo, L. Spectral decompositions and $\mathbb{L}^2$-operator normof toy hypocoercive semi-groups. Kinetic & Related Models vol. 6 317–372 (2013) – 10.3934/krm.2013.6.317
  • Golse, F. On the Periodic Lorentz Gas and the Lorentz Kinetic Equation. Annales de la Faculté des sciences de Toulouse : Mathématiques vol. 17 735–749 (2009) – 10.5802/afst.1200
  • Han-Kwan, D. & Léautaud, M. Geometric Analysis of the Linear Boltzmann Equation I. Trend to Equilibrium. Annals of PDE vol. 1 (2015) – 10.1007/s40818-015-0003-z
  • Hérau, Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation. Asymptot. Anal. (2006)
  • Ilchmann, A., Ryan, E. P. & Townsend, P. Tracking with Prescribed Transient Behavior for Nonlinear Systems of Known Relative Degree. SIAM Journal on Control and Optimization vol. 46 210–230 (2007) – 10.1137/050641946
  • Isidori, (1985)
  • Jacob, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (2012)
  • Klar, Interacting fiber structures: mathematical aspects and applications. Riv. Mat. Univ. Parma (2019)
  • Lorentz, Le mouvement des électrons dans les métaux. Arch. Néerl. (1905)
  • Lowe, C. P. & Masters, A. J. Various velocity correlations functions in a Lorentz gas - simulation and mode coupling theory. Physica A: Statistical Mechanics and its Applications vol. 214 413–425 (1995) – 10.1016/0378-4371(94)00233-j
  • Rudin, (1991)
  • van der Schaft, Port-Hamiltonian Systems Theory: An Introductory Overview. (2014)
  • Söderlind, G. The logarithmic norm. History and modern theory. BIT Numerical Mathematics vol. 46 631–652 (2006) – 10.1007/s10543-006-0069-9
  • Trefethen, (2005)
  • Ukai, Sur la solution globale du problème mixte de l’équation de Boltzmann non linéaire. J. Math. Pures Appl. (9) (1978)
  • Villani, Hypocoercivity. (2009)
  • Zabczyk, J. Mathematical Control Theory. Systems & Control: Foundations & Applications (Springer International Publishing, 2020). doi:10.1007/978-3-030-44778-6 – 10.1007/978-3-030-44778-6