Authors

Jiahui Qiu, Bingyi Jin, Qiang Li, Wei Zhang, Hongpeng Liu

Abstract

This paper examines the control principle and limitations of traditional droop control method based harmonic suppression of grid-connected current. Subsequently, an innovative harmonic suppression method of grid-connected current for voltage-controlled inverter has been presented. The grid-connected inverter model is transposed to the port-controlled Hamiltonian model, and the grid-connected controller is constructed on the energy-shaping control theory. This approach significantly simplifies the structure of the grid-connected controller and manages parameter quantity. Based on these findings, the effectiveness of the proposed harmonic suppression method in injected grid current is verified under various operating conditions via an experimental platform for the inverter, which employs the Danfoss inverter and RT Box controller.

Citation

  • Journal: 2024 IEEE Applied Power Electronics Conference and Exposition (APEC)
  • Year: 2024
  • Volume:
  • Issue:
  • Pages: 2724–2729
  • Publisher: IEEE
  • DOI: 10.1109/apec48139.2024.10509474

BibTeX

@inproceedings{Qiu_2024,
  title={{Harmonic Suppression Strategy Of Grid-connected Current Based On Energy-shaping Control}},
  DOI={10.1109/apec48139.2024.10509474},
  booktitle={{2024 IEEE Applied Power Electronics Conference and Exposition (APEC)}},
  publisher={IEEE},
  author={Qiu, Jiahui and Jin, Bingyi and Li, Qiang and Zhang, Wei and Liu, Hongpeng},
  year={2024},
  pages={2724--2729}
}

Download the bib file

References

  • Zhang, H., Li, X., Xiao, S. & Balog, R. S. Hybrid hysteresis current control and low‐frequency current harmonics mitigation based on proportional resonant in dc/ac inverter. IET Power Electronics 11, 2093–2101 (2018) – 10.1049/iet-pel.2018.5384
  • Zhou, L. et al. Inverter-Current-Feedback Resonance-Suppression Method for LCL-Type DG System to Reduce Resonance-Frequency Offset and Grid-Inductance Effect. IEEE Trans. Ind. Electron. 65, 7036–7048 (2018) – 10.1109/tie.2018.2795556
  • Xuewei, S. et al. Research on Energy Storage Configuration Method Based on Wind and Solar Volatility. 2020 10th International Conference on Power and Energy Systems (ICPES) (2020) doi:10.1109/icpes51309.2020.9349645 – 10.1109/icpes51309.2020.9349645
  • Shengzhi, L. et al. The realized forms of power electronics technology in new generation distribution power system. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia) 2379–2383 (2019) doi:10.1109/isgt-asia.2019.8881115 – 10.1109/isgt-asia.2019.8881115
  • Hara, S., Yamamoto, Y., Omata, T. & Nakano, M. Repetitive control system: a new type servo system for periodic exogenous signals. IEEE Trans. Automat. Contr. 33, 659–668 (1988) – 10.1109/9.1274
  • Kang, S. & Kim, K. Sliding mode harmonic compensation strategy for power quality improvement of a grid‐connected inverter under distorted grid condition. IET Power Electronics 8, 1461–1472 (2015) – 10.1049/iet-pel.2014.0833
  • Liu, Y., Cheng, S., Ning, B. & Li, Y. Robust Model Predictive Control With Simplified Repetitive Control for Electrical Machine Drives. IEEE Trans. Power Electron. 34, 4524–4535 (2019) – 10.1109/tpel.2018.2857837
  • Pandove, G. & Singh, M. Robust Repetitive Control Design for a Three-Phase Four Wire Shunt Active Power Filter. IEEE Trans. Ind. Inf. 15, 2810–2818 (2019) – 10.1109/tii.2018.2875035
  • Lu, W., Zhou, K., Wang, D. & Cheng, M. A General Parallel Structure Repetitive Control Scheme for Multiphase DC–AC PWM Converters. IEEE Trans. Power Electron. 28, 3980–3987 (2013) – 10.1109/tpel.2012.2229395
  • Yang, Y. et al. Frequency Adaptive Selective Harmonic Control for Grid-Connected Inverters. IEEE Trans. Power Electron. 30, 3912–3924 (2015) – 10.1109/tpel.2014.2344049
  • Bin Zhang, Danwei Wang, Keliang Zhou & Yigang Wang. Linear Phase Lead Compensation Repetitive Control of a CVCF PWM Inverter. IEEE Trans. Ind. Electron. 55, 1595–1602 (2008) – 10.1109/tie.2008.917105
  • Zhang, B., Zhou, K., Wang, Y. & Wang, D. Performance improvement of repetitive controlled PWM inverters: A phase‐lead compensation solution. Circuit Theory & Apps 38, 453–469 (2008) – 10.1002/cta.572
  • Zhou, K., Yang, Y., Blaabjerg, F. & Wang, D. Optimal Selective Harmonic Control for Power Harmonics Mitigation. IEEE Trans. Ind. Electron. 62, 1220–1230 (2015) – 10.1109/tie.2014.2336629
  • He, J., Li, Y. W. & Munir, M. S. A Flexible Harmonic Control Approach Through Voltage-Controlled DG–Grid Interfacing Converters. IEEE Trans. Ind. Electron. 59, 444–455 (2012) – 10.1109/tie.2011.2141098
  • Mayne, D. Q., Seron, M. M. & Raković, S. V. Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 41, 219–224 (2005) – 10.1016/j.automatica.2004.08.019
  • Nguyen Thanh Binh, Nguyen Anh Tung, Dao Phuong Nam & Cao Thanh Trung. An approach robust nonlinear model predictive control with state-dependent disturbances via linear matrix inequalities. 2017 International Conference on System Science and Engineering (ICSSE) 418–422 (2017) doi:10.1109/icsse.2017.8030909 – 10.1109/icsse.2017.8030909
  • Bemporad, A. & Morari, M. Robust model predictive control: A survey. Lecture Notes in Control and Information Sciences 207–226 doi:10.1007/bfb0109870 – 10.1007/bfb0109870
  • Saltık, M. B., Özkan, L., Ludlage, J. H. A., Weiland, S. & Van den Hof, P. M. J. An outlook on robust model predictive control algorithms: Reflections on performance and computational aspects. Journal of Process Control 61, 77–102 (2018) – 10.1016/j.jprocont.2017.10.006
  • Micallef, A., Apap, M., Spiteri-Staines, C. & Guerrero, J. M. Mitigation of Harmonics in Grid-Connected and Islanded Microgrids Via Virtual Admittances and Impedances. IEEE Trans. Smart Grid 1–11 (2015) doi:10.1109/tsg.2015.2497409 – 10.1109/tsg.2015.2497409
  • IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. doi:10.1109/ieeestd.2018.8332112 – 10.1109/ieeestd.2018.8332112