Hamiltonian tomography of photonic lattices
Authors
Ruichao Ma, Clai Owens, Aman LaChapelle, David I. Schuster, Jonathan Simon
Abstract
In this paper we introduce an approach to Hamiltonian tomography of noninteracting tight-binding photonic lattices. To begin with, we prove that the matrix element of the low-energy effective Hamiltonian between sites \( \ensuremath{\alpha} \) and \( \ensuremath{\beta} \) may be obtained directly from \( {S}_{\ensuremath{\alpha}\ensuremath{\beta}[[:space:]]}(\ensuremath{\omega}) \), the (suitably normalized) two-port measurement between sites \( \ensuremath{\alpha} \) and \( \ensuremath{\beta} \) at frequency \( \ensuremath{\omega} \). This general result enables complete characterization of both on-site energies and tunneling matrix elements in arbitrary lattice networks by spectroscopy, and suggests that coupling between lattice sites is a topological property of the two-port spectrum. We further provide extensions of this technique for measurement of band projectors in finite, disordered systems with good band flatness ratios, and apply the tool to direct real-space measurement of the Chern number. Our approach demonstrates the extraordinary potential of microwave quantum circuits for exploration of exotic synthetic materials, providing a clear path to characterization and control of single-particle properties of Jaynes-Cummings-Hubbard lattices. More broadly, we provide a robust, unified method of spectroscopic characterization of linear networks from photonic crystals to microwave lattices and everything in between.
Citation
- Journal: Physical Review A
- Year: 2017
- Volume: 95
- Issue: 6
- Pages:
- Publisher: American Physical Society (APS)
- DOI: 10.1103/physreva.95.062120
BibTeX
@article{Ma_2017,
title={{Hamiltonian tomography of photonic lattices}},
volume={95},
ISSN={2469-9934},
DOI={10.1103/physreva.95.062120},
number={6},
journal={Physical Review A},
publisher={American Physical Society (APS)},
author={Ma, Ruichao and Owens, Clai and LaChapelle, Aman and Schuster, David I. and Simon, Jonathan},
year={2017}
}
References
- Jo, G.-B. et al. Ultracold Atoms in a Tunable Optical Kagome Lattice. Phys. Rev. Lett. 108, (2012) – 10.1103/physrevlett.108.045305
- Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G. & Esslinger, T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 483, 302–305 (2012) – 10.1038/nature10871
- Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002) – 10.1038/415039a
- Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012) – 10.1038/nature10941
- González-Tudela, A., Hung, C.-L., Chang, D. E., Cirac, J. I. & Kimble, H. J. Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals. Nature Photon 9, 320–325 (2015) – 10.1038/nphoton.2015.54
- Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009) – 10.1038/nature08482
- Gericke, T., Würtz, P., Reitz, D., Langen, T. & Ott, H. High-resolution scanning electron microscopy of an ultracold quantum gas. Nature Phys 4, 949–953 (2008) – 10.1038/nphys1102
- Husmann, D. et al. Connecting strongly correlated superfluids by a quantum point contact. Science 350, 1498–1501 (2015) – 10.1126/science.aac9584
- Bakr, W. S. et al. Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level. Science 329, 547–550 (2010) – 10.1126/science.1192368
- Underwood, D. L., Shanks, W. E., Koch, J. & Houck, A. A. Low-disorder microwave cavity lattices for quantum simulation with photons. Phys. Rev. A 86, (2012) – 10.1103/physreva.86.023837
- Stormer, H. L., Tsui, D. C. & Gossard, A. C. The fractional quantum Hall effect. Rev. Mod. Phys. 71, S298–S305 (1999) – 10.1103/revmodphys.71.s298
- Burgarth, D., Maruyama, K. & Nori, F. Coupling strength estimation for spin chains despite restricted access. Phys. Rev. A 79, (2009) – 10.1103/physreva.79.020305
- Burgarth, D. & Maruyama, K. Indirect Hamiltonian identification through a small gateway. New J. Phys. 11, 103019 (2009) – 10.1088/1367-2630/11/10/103019
- Takayanagi, K. Sum rules in the response function method. Nuclear Physics A 510, 162–172 (1990) – 10.1016/0375-9474(90)90293-u
- Bardyn, C.-E., Huber, S. D. & Zilberberg, O. Measuring topological invariants in small photonic lattices. New J. Phys. 16, 123013 (2014) – 10.1088/1367-2630/16/12/123013
- Hafezi, M. Measuring Topological Invariants in Photonic Systems. Phys. Rev. Lett. 112, (2014) – 10.1103/physrevlett.112.210405
- Ozawa, T. & Carusotto, I. Anomalous and Quantum Hall Effects in Lossy Photonic Lattices. Phys. Rev. Lett. 112, (2014) – 10.1103/physrevlett.112.133902
- C. Cohen-Tannoudji, Atom-photon Interactions: Basic Processes and Applications (1992)
- Rotter, I. A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A: Math. Theor. 42, 153001 (2009) – 10.1088/1751-8113/42/15/153001
- Weidenmüller, H. A. Statistical theory of nuclear reactions and the Gaussian orthogonal ensemble. Annals of Physics 158, 120–141 (1984) – 10.1016/0003-4916(84)90241-0
- Scully, M. O. & Zubairy, M. S. Quantum Optics. (1997) doi:10.1017/cbo9780511813993 – 10.1017/cbo9780511813993
- Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004) – 10.1038/nature02851
- Ningyuan, J., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time- and Site-Resolved Dynamics in a Topological Circuit. Phys. Rev. X 5, (2015) – 10.1103/physrevx.5.021031
- Albert, V. V., Glazman, L. I. & Jiang, L. Topological Properties of Linear Circuit Lattices. Phys. Rev. Lett. 114, (2015) – 10.1103/physrevlett.114.173902
- Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett. 49, 405–408 (1982) – 10.1103/physrevlett.49.405
- Kitaev, A. Anyons in an exactly solved model and beyond. Annals of Physics 321, 2–111 (2006) – 10.1016/j.aop.2005.10.005
- Hogan, C. L. The Ferromagnetic Faraday Effect at Microwave Frequencies and its Applications. Rev. Mod. Phys. 25, 253–262 (1953) – 10.1103/revmodphys.25.253
- Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional Quantum Hall States at Zero Magnetic Field. Phys. Rev. Lett. 106, (2011) – 10.1103/physrevlett.106.236804
- Yao, N. Y. et al. Topological Flat Bands from Dipolar Spin Systems. Phys. Rev. Lett. 109, (2012) – 10.1103/physrevlett.109.266804
- Schine, N., Ryou, A., Gromov, A., Sommer, A. & Simon, J. Synthetic Landau levels for photons. Nature 534, 671–675 (2016) – 10.1038/nature17943
- Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nature Photon 7, 1001–1005 (2013) – 10.1038/nphoton.2013.274
- Nash, L. M. et al. Topological mechanics of gyroscopic metamaterials. Proc. Natl. Acad. Sci. U.S.A. 112, 14495–14500 (2015) – 10.1073/pnas.1507413112
- Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015) – 10.1126/science.aab0239
- Franco-Villafañe, J. A. et al. First Experimental Realization of the Dirac Oscillator. Phys. Rev. Lett. 111, (2013) – 10.1103/physrevlett.111.170405
- Bellec, M., Kuhl, U., Montambaux, G. & Mortessagne, F. Tight-binding couplings in microwave artificial graphene. Phys. Rev. B 88, (2013) – 10.1103/physrevb.88.115437
- Morales, A., Flores, J., Gutiérrez, L. & Méndez-Sánchez, R. A. Compressional and torsional wave amplitudes in rods with periodic structures. The Journal of the Acoustical Society of America 112, 1961–1967 (2002) – 10.1121/1.1509431
- Bandres, M. A., Rechtsman, M. C. & Segev, M. Topological Photonic Quasicrystals: Fractal Topological Spectrum and Protected Transport. Phys. Rev. X 6, (2016) – 10.1103/physrevx.6.011016
- Fitzpatrick, M., Sundaresan, N. M., Li, A. C. Y., Koch, J. & Houck, A. A. Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice. Phys. Rev. X 7, (2017) – 10.1103/physrevx.7.011016
- Anderson, B. M., Ma, R., Owens, C., Schuster, D. I. & Simon, J. Engineering Topological Many-Body Materials in Microwave Cavity Arrays. Phys. Rev. X 6, (2016) – 10.1103/physrevx.6.041043
- Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nature Phys 13, 146–151 (2016) – 10.1038/nphys3930
- Underwood, D. L. et al. Imaging Photon Lattice States by Scanning Defect Microscopy. Phys. Rev. X 6, (2016) – 10.1103/physrevx.6.021044
- Sommer, A. & Simon, J. Engineering photonic Floquet Hamiltonians through Fabry–Pérot resonators. New J. Phys. 18, 035008 (2016) – 10.1088/1367-2630/18/3/035008
- Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006) – 10.1038/nature05131
- Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010) – 10.1038/nature09567