Hamiltonian theory of symmetric optical network transforms
Authors
Päivi Törmä, Stig Stenholm, Igor Jex
Abstract
We discuss the theory of extracting an interaction Hamiltonian from a preassigned unitary transformation of quantum states. Such a procedure is of significance in quantum computations and other optical information processing tasks. We particularize the problem to the construction of totally symmetric 2N ports as introduced by Zeilinger and his collaborators [A. Zeilinger, M. Zukowski, M. A. Horne, H. J. Bernstein, and D. M. Greenberger, in Fundamental Aspects of Quantum Theory, edited by J. Anandan and J. J. Safko (World Scientific, Singapore, 1994)]. These are realized by the discrete Fourier transform, which simplifies the construction of the Hamiltonian by known methods of linear algebra. The Hamiltonians found are discussed and alternative realizations of the Zeilinger class transformations are presented. We briefly discuss the applicability of the method to more general devices.
Citation
- Journal: Physical Review A
- Year: 2002
- Volume: 52
- Issue: 6
- Pages: 4853–4860
- Publisher: American Physical Society (APS)
- DOI: 10.1103/physreva.52.4853
BibTeX
@article{T_rm__1995,
title={{Hamiltonian theory of symmetric optical network transforms}},
volume={52},
ISSN={1094-1622},
DOI={10.1103/physreva.52.4853},
number={6},
journal={Physical Review A},
publisher={American Physical Society (APS)},
author={Törmä, Päivi and Stenholm, Stig and Jex, Igor},
year={1995},
pages={4853--4860}
}
References
- Tapster, P. R., Rarity, J. G. & Owens, P. C. M. Violation of Bell’s Inequality over 4 km of Optical Fiber. Phys. Rev. Lett. 73, 1923–1926 (1994) – 10.1103/physrevlett.73.1923
- Feynman, R. P. Quantum mechanical computers. Found Phys 16, 507–531 (1986) – 10.1007/bf01886518
- Benioff, P. Quantum mechanical hamiltonian models of turing machines. J Stat Phys 29, 515–546 (1982) – 10.1007/bf01342185
- Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985) – 10.1098/rspa.1985.0070
- Quantum computational networks. Proc. R. Soc. Lond. A 425, 73–90 (1989) – 10.1098/rspa.1989.0099
- Walls, D. F. & Milburn, G. J. Quantum Optics. (Springer Berlin Heidelberg, 1994). doi:10.1007/978-3-642-79504-6 – 10.1007/978-3-642-79504-6
- Ekert, A. K. & Knight, P. L. Canonical transformation and decay into phase-sensitive reservoirs. Phys. Rev. A 42, 487–493 (1990) – 10.1103/physreva.42.487
- Ekert, A. K. & Knight, P. L. Relationship between semiclassical and quantum-mechanical input-output theories of optical response. Phys. Rev. A 43, 3934–3938 (1991) – 10.1103/physreva.43.3934
- Stenholm, S. Quantum Optics of Linear Systems. Journal of Modern Optics 41, 2483–2490 (1994) – 10.1080/09500349414552321
- Stenholm, S. Observable entities in quantum-optics networks. Appl. Phys. B 60, 243–246 (1995) – 10.1007/bf01135869
- Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994) – 10.1103/physrevlett.73.58
- A. Zeilinger, Fundamental Aspects of Quantum theory (1994)
- Bernstein, H. J. Must quantum theory assume unrestricted superposition? Journal of Mathematical Physics 15, 1677–1679 (1974) – 10.1063/1.1666523
- K. Mattle, Appl. Phys. B (1995)
- Löwdin, P.-O. The Normal Constants of Motion in Quantum Mechanics Treated by Projection Technique. Rev. Mod. Phys. 34, 520–530 (1962) – 10.1103/revmodphys.34.520
- Jex, I., Stenholm, S. & Zeilinger, A. Hamiltonian theory of a symmetric multiport. Optics Communications 117, 95–101 (1995) – 10.1016/0030-4018(95)00078-m
- Apostol, T. M. Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics (Springer New York, 1976). doi:10.1007/978-1-4757-5579-4 – 10.1007/978-1-4757-5579-4
- M. R. Schroeder, Number Theory in Science and Communication, 2nd ed. (1990)