Hamiltonian formulation of adiabatic free boundary Euler flows
Authors
Abstract
A Hamiltonian formulation of adiabatic free boundary inviscid fluid flow using only physical variables is presented in both the material and spatial formulation. Using the symmetry of particle relabeling, we derive the noncanonical Poisson bracket in Eulerian representation as a reduction from the canonical bracket in Lagrangian representation. When the free boundary of the fluid is given as the zero set of a function dragged along by the fluid flow, there is another bracket due to Abarbanel et al. [Physics of Fluids, (vol. 31), (2802), (1988)]. It is shown that this formulation «coverså the present one by proving that the natural restriction map is Poisson. It is also shown that the potential vortycity and the conserved quantities found by Abarbanel and Holm [Physics of Fluids (vol. 30), (3369), (1987)] are also conserved in the free boundary case.
Keywords
Hamiltonian formulation; Euler flows
Citation
- Journal: Journal of Geometry and Physics
- Year: 1989
- Volume: 6
- Issue: 2
- Pages: 271–291
- Publisher: Elsevier BV
- DOI: 10.1016/0393-0440(89)90017-x
BibTeX
@article{Mazer_1989,
title={{Hamiltonian formulation of adiabatic free boundary Euler flows}},
volume={6},
ISSN={0393-0440},
DOI={10.1016/0393-0440(89)90017-x},
number={2},
journal={Journal of Geometry and Physics},
publisher={Elsevier BV},
author={Mazer, Arthur and Ratiu, Tudor},
year={1989},
pages={271--291}
}
References
- Lewis, The Hamiltonian structure for dynamic free boundary problems. Physica (1986)
- Lewis, D., Marsden, J. & Ratiu, T. Stability and bifurcation of a rotating planar liquid drop. Journal of Mathematical Physics 28, 2508–2515 (1987) – 10.1063/1.527740
- Lewis, Rotating liquid drops: Hamiltonian structure, stability and bifurcation. (1987)
- Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. Prikl. Mekh. Fiz. (1968)
- J. Appl. Mech. Tech. Phys. (1968)
- Broer, L. J. F. On the hamiltonian theory of surface waves. Appl. Sci. Res. 29, 430–446 (1974) – 10.1007/bf00384164
- Miles, J. W. On Hamilton’s principle for surface waves. J. Fluid Mech. 83, 153–158 (1977) – 10.1017/s0022112077001104
- Milder, D. M. A note regarding ‘On Hamilton’s principle for surface waves’. J. Fluid Mech. 83, 159–161 (1977) – 10.1017/s0022112077001116
- Benjamin, T. B. & Olver, P. J. Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech. 125, 137 (1982) – 10.1017/s0022112082003292
- Benjamin, T. B. Hamiltonian theory for motions of bubbles in an infinite liquid. J. Fluid Mech. 181, 349 (1987) – 10.1017/s002211208700212x
- Henyey, Hamiltonian description of the interaction of surface waves with mixed layer currents. (1987)
- Marsden, J. E., Raţiu, T. & Weinstein, A. Semidirect products and reduction in mechanics. Trans. Amer. Math. Soc. 281, 147–177 (1984) – 10.1090/s0002-9947-1984-0719663-1
- Marsden, J. E., Ratiu, T. & Weinstein, A. Reduction and Hamiltonian structures on duals of semidirect product Lie algebras. Contemporary Mathematics 55–100 (1984) doi:10.1090/conm/028/751975 – 10.1090/conm/028/751975
- Abarbanel, H. D. I., Brown, R. & Yang, Y. M. Hamiltonian formulation of inviscid flows with free boundaries. The Physics of Fluids 31, 2802–2809 (1988) – 10.1063/1.866987
- Montgomery, R., Marsden, J. & Ratiu, T. Gauged Lie-Poisson structures. Contemporary Mathematics 101–114 (1984) doi:10.1090/conm/028/751976 – 10.1090/conm/028/751976
- Nonlinear stability analysis of stratified fluid equilibria. Phil. Trans. R. Soc. Lond. A 318, 349–409 (1986) – 10.1098/rsta.1986.0078
- Holm, D. D., Marsden, J. E., Ratiu, T. & Weinstein, A. Nonlinear stability of fluid and plasma equilibria. Physics Reports 123, 1–116 (1985) – 10.1016/0370-1573(85)90028-6
- Lawson, (1977)
- Abarbanel, H. D. I. & Holm, D. D. Nonlinear stability analysis of inviscid flows in three dimensions: Incompressible fluids and barotropic fluids. The Physics of Fluids 30, 3369–3382 (1987) – 10.1063/1.866469
- Ratiu, T. Euler-Poisson Equations on Lie Algebras and the N-Dimensional Heavy Rigid Body. American Journal of Mathematics 104, 409 (1982) – 10.2307/2374165
- Ratiu, Euler-Poisson equations on Lie algebras and the N -dimensional heavy rigid body. Am. J. Math. (1982)
- Ertel, Ein neuer hydrodynamisches Wirbelsatz. Meteorol. Z. (1942)
- Pedlosky, (1982)
- Holm, The Hamiltonian structure of continuum mechanics in material, inverse material, spatial, and convective representations. (1986)
- Poincaré, H. Sur l’équilibre d’une masse fluide animée d’un mouvement de rotation. Acta Math. 7, 259–380 (1885) – 10.1007/bf02402204