Authors

D.P. Srivastava, V. Sahni, P.S. Satsangi

Abstract

Graph-theoretic quantum system modelling (GTQSM) is facilitated by considering the fundamental unit of quantum computation and information, viz. a quantum bit or qubit as a basic building block. Unit directional vectors “ket 0” and “ket 1” constitute two distinct fundamental quantum across variable orthonormal basis vectors, for the Hilbert space, specifying the direction of propagation of information, or computation data, while complementary fundamental quantum through, or flow rate, variables specify probability parameters, or amplitudes, as surrogates for scalar quantum information measure (von Neumann entropy). This paper applies GTQSM in continuum of protein heterodimer tubulin molecules of self-assembling polymers, viz. microtubules in the brain as a holistic system of interacting components representing hierarchical clustered quantum Hopfield network, hQHN, of networks. The quantum input/output ports of the constituent elemental interaction components, or processes, of tunnelling interactions and Coulombic bidirectional interactions are in cascade and parallel interconnections with each other, while the classical output ports of all elemental components are interconnected in parallel to accumulate micro-energy functions generated in the system as Hamiltonian, or Lyapunov, energy function. The paper presents an insight, otherwise difficult to gain, for the complex system of systems represented by clustered quantum Hopfield network, hQHN, through the application of GTQSM construct.

Citation

  • Journal: International Journal of General Systems
  • Year: 2014
  • Volume: 43
  • Issue: 6
  • Pages: 633–648
  • Publisher: Informa UK Limited
  • DOI: 10.1080/03081079.2014.893298

BibTeX

@article{Srivastava_2014,
  title={{Graph-theoretic quantum system modelling for neuronal microtubules as hierarchical clustered quantum Hopfield networks}},
  volume={43},
  ISSN={1563-5104},
  DOI={10.1080/03081079.2014.893298},
  number={6},
  journal={International Journal of General Systems},
  publisher={Informa UK Limited},
  author={Srivastava, D.P. and Sahni, V. and Satsangi, P.S.},
  year={2014},
  pages={633--648}
}

Download the bib file

References

  • The Emerging Physics of Consciousness. The Frontiers Collection (Springer Berlin Heidelberg, 2006). doi:10.1007/3-540-36723-3 – 10.1007/3-540-36723-3
  • Craddock T. J. A., An Assessment of the Information Processing Capabilities of Neuronal Microtubules at Physiological Temperature (2007)
  • Feynman R. P., Quantum Mechanics and Path Integrals (2010)
  • Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558 (1982) – 10.1073/pnas.79.8.2554
  • Jamshidi M, System of Systems Engineering: Principles and Application (2009)
  • Kitto, K. High end complexity. International Journal of General Systems 37, 689–714 (2008) – 10.1080/03081070701524232
  • Koenig H. E., Analysis of Discrete Physical Systems (1967)
  • KUMAR, S. & SATSANGI, P. S. System dynamics simulation of Hopfield neural networks. International Journal of Systems Science 23, 1517–1525 (1992) – 10.1080/00207729208949403
  • Zhou, R., Zhang, M., Wu, Q. & Shi, Y. Designing novel reversible BCD adder and parallel adder/subtraction using new reversible logic gates. International Journal of Electronics 99, 1395–1414 (2012) – 10.1080/00207217.2012.669716
  • Penrose R., Journal of Cosmology (2011)
  • Sahni V., Quantum Information Systems (2011)
  • Srivastava, D. P., Sahni, V. & Satsangi, P. S. Graph-theoretic quantum system modelling for information/computation processing circuits. International Journal of General Systems 40, 777–804 (2011) – 10.1080/03081079.2011.602016
  • Steane, A. M. & Rieffel, E. G. Beyond bits: the future of quantum information processing. Computer 33, 38–45 (2000) – 10.1109/2.816267
  • Vedral, V. Introduction to Quantum Information Science. (2006) doi:10.1093/acprof:oso/9780199215706.001.0001 – 10.1093/acprof:oso/9780199215706.001.0001
  • The Emerging Physics of Consciousness. The Frontiers Collection (Springer Berlin Heidelberg, 2006). doi:10.1007/3-540-36723-3 – 10.1007/3-540-36723-3