Global existence of weak solutions for a shallow water equation
Authors
Zheng Yin, Shaoyong Lai, Yunxi Guo
Abstract
A nonlinear shallow water equation, which includes the famous Camassa–Holm (CH) and Degasperis–Procesi (DP) equations as special cases, is investigated. Provided that initial value u 0 ∈ H s ( 1 ≤ s ≤ 3 2 ) , u 0 ∈ L 1 ( R ) and ( 1 − ∂ x 2 ) u 0 does not change sign, it is shown that there exists a unique global weak solution to the equation.
Keywords
Global existence; Blow-up; Shallow water model; Local well-posedness
Citation
- Journal: Computers & Mathematics with Applications
- Year: 2010
- Volume: 60
- Issue: 9
- Pages: 2645–2652
- Publisher: Elsevier BV
- DOI: 10.1016/j.camwa.2010.08.094
BibTeX
@article{Yin_2010,
title={{Global existence of weak solutions for a shallow water equation}},
volume={60},
ISSN={0898-1221},
DOI={10.1016/j.camwa.2010.08.094},
number={9},
journal={Computers & Mathematics with Applications},
publisher={Elsevier BV},
author={Yin, Zheng and Lai, Shaoyong and Guo, Yunxi},
year={2010},
pages={2645--2652}
}
References
- Degasperis, Asymptotic integrability. (1999)
- BRESSAN, A. & CONSTANTIN, A. GLOBAL DISSIPATIVE SOLUTIONS OF THE CAMASSA–HOLM EQUATION. Analysis and Applications vol. 05 1–27 (2007) – 10.1142/s0219530507000857
- Coclite, G. M. & Karlsen, K. H. On the well-posedness of the Degasperis–Procesi equation. Journal of Functional Analysis vol. 233 60–91 (2006) – 10.1016/j.jfa.2005.07.008
- Escher, J., Liu, Y. & Yin, Z. Global weak solutions and blow-up structure for the Degasperis–Procesi equation. Journal of Functional Analysis vol. 241 457–485 (2006) – 10.1016/j.jfa.2006.03.022
- Matsuno, Y. Multisoliton solutions of the Degasperis–Procesi equation and their peakon limit. Inverse Problems vol. 21 1553–1570 (2005) – 10.1088/0266-5611/21/5/004
- Camassa, R. & Holm, D. D. An integrable shallow water equation with peaked solitons. Physical Review Letters vol. 71 1661–1664 (1993) – 10.1103/physrevlett.71.1661
- JOHNSON, R. S. Camassa–Holm, Korteweg–de Vries and relatedmodels for water waves. Journal of Fluid Mechanics vol. 455 63–82 (2002) – 10.1017/s0022112001007224
- Johnson, R. S. On solutions of the Camassa-Holm equation. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences vol. 459 1687–1708 (2003) – 10.1098/rspa.2002.1078
- Fokas, Symplectic structures, their Backlund transformation and hereditary symmetries. Physica D (1981)
- Constantin, A. & Lannes, D. The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations. Archive for Rational Mechanics and Analysis vol. 192 165–186 (2008) – 10.1007/s00205-008-0128-2
- Constantin, A. On the scattering problem for the Camassa-Holm equation. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences vol. 457 953–970 (2001) – 10.1098/rspa.2000.0701
- Lenells, J. Conservation laws of the Camassa–Holm equation. Journal of Physics A: Mathematical and General vol. 38 869–880 (2005) – 10.1088/0305-4470/38/4/007
- McKean, H. P. Fredholm determinants and the Camassa‐Holm hierarchy. Communications on Pure and Applied Mathematics vol. 56 638–680 (2003) – 10.1002/cpa.10069
- Constantin, Global existence and blow-up for a shallow water equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (1998)
- Constantin, A. Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Annales de l’institut Fourier vol. 50 321–362 (2000) – 10.5802/aif.1757
- Constantin, A. On the Inverse Spectral Problem for the Camassa–Holm Equation. Journal of Functional Analysis vol. 155 352–363 (1998) – 10.1006/jfan.1997.3231
- Constantin, A. & Escher, J. Global weak solutions for a shallow water equation. Indiana University Mathematics Journal vol. 47 0–0 (1998) – 10.1512/iumj.1998.47.1466
- Constantin, A. & Kolev, B. Geodesic flow on the diffeomorphism group of the circle. Commentarii Mathematici Helvetici vol. 78 787–804 (2003) – 10.1007/s00014-003-0785-6
- Constantin, A., Kappeler, T., Kolev, B. & Topalov, P. On geodesic exponential maps of the Virasoro group. Annals of Global Analysis and Geometry vol. 31 155–180 (2006) – 10.1007/s10455-006-9042-8
- Kouranbaeva, S. The Camassa–Holm equation as a geodesic flow on the diffeomorphism group. Journal of Mathematical Physics vol. 40 857–868 (1999) – 10.1063/1.532690
- Misio łek, G. A shallow water equation as a geodesic flow on the Bott-Virasoro group. Journal of Geometry and Physics vol. 24 203–208 (1998) – 10.1016/s0393-0440(97)00010-7
- Molinet, L. On Well-Posedness Results for Camassa-Holm Equation on the Line: A Survey. Journal of Nonlinear Mathematical Physics vol. 11 521 (2004) – 10.2991/jnmp.2004.11.4.8
- Constantin, A. & McKean, H. P. A shallow water equation on the circle. Communications on Pure and Applied Mathematics vol. 52 949–982 (1999) – 10.1002/(sici)1097-0312(199908)52:8<949::aid-cpa3>3.0.co;2-d
- Constantin, A. & Escher, J. Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Communications on Pure and Applied Mathematics vol. 51 475–504 (1998) – 10.1002/(sici)1097-0312(199805)51:5<475::aid-cpa2>3.0.co;2-5
- Constantin, A. & Escher, J. Wave breaking for nonlinear nonlocal shallow water equations. Acta Mathematica vol. 181 229–243 (1998) – 10.1007/bf02392586
- Li, Y. A. & Olver, P. J. Well-posedness and Blow-up Solutions for an Integrable Nonlinearly Dispersive Model Wave Equation. Journal of Differential Equations vol. 162 27–63 (2000) – 10.1006/jdeq.1999.3683
- Xin, Z. & Zhang, P. On the weak solutions to a shallow water equation. Communications on Pure and Applied Mathematics vol. 53 1411–1433 (2000) – 10.1002/1097-0312(200011)53:11<1411::aid-cpa4>3.0.co;2-5
- Bressan, A. & Constantin, A. Global Conservative Solutions of the Camassa–Holm Equation. Archive for Rational Mechanics and Analysis vol. 183 215–239 (2006) – 10.1007/s00205-006-0010-z
- Parker, A. On the Camassa–Holm equation and a direct method of solution. III -soliton solutions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences vol. 461 3893–3911 (2005) – 10.1098/rspa.2005.1537
- Degasperis, A new integral equation with peakon solutions. Theoret. and Math. Phys. (2002)
- Dullin, H. R., Gottwald, G. A. & Holm, D. D. Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves. Fluid Dynamics Research vol. 33 73–95 (2003) – 10.1016/s0169-5983(03)00046-7
- Lundmark, H. & Szmigielski, J. Multi-peakon solutions of the Degasperis–Procesi equation. Inverse Problems vol. 19 1241–1245 (2003) – 10.1088/0266-5611/19/6/001
- Vakhnenko, V. O. & Parkes, E. J. Periodic and solitary-wave solutions of the Degasperis–Procesi equation. Chaos, Solitons & Fractals vol. 20 1059–1073 (2004) – 10.1016/j.chaos.2003.09.043
- Holm, D. D. & Staley, M. F. Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs. SIAM Journal on Applied Dynamical Systems vol. 2 323–380 (2003) – 10.1137/s1111111102410943
- Escher,
- Escher,
- Henry, D. Infinite propagation speed for the Degasperis–Procesi equation. Journal of Mathematical Analysis and Applications vol. 311 755–759 (2005) – 10.1016/j.jmaa.2005.03.001
- Lenells, J. Traveling wave solutions of the Degasperis–Procesi equation. Journal of Mathematical Analysis and Applications vol. 306 72–82 (2005) – 10.1016/j.jmaa.2004.11.038
- Liu, Y. & Yin, Z. Global Existence and Blow-Up Phenomena for the Degasperis-Procesi Equation. Communications in Mathematical Physics vol. 267 801–820 (2006) – 10.1007/s00220-006-0082-5
- Yin, Z. On the Cauchy problem for an integrable equation with peakon solutions. Illinois Journal of Mathematics vol. 47 (2003) – 10.1215/ijm/1258138186
- Yin, Z. Global weak solutions for a new periodic integrable equation with peakon solutions. Journal of Functional Analysis vol. 212 182–194 (2004) – 10.1016/j.jfa.2003.07.010
- Lin, Z. & Liu, Y. Stability of peakons for the Degasperis‐Procesi equation. Communications on Pure and Applied Mathematics vol. 62 125–146 (2008) – 10.1002/cpa.20239
- Mustafa, O. G. A Note on the Degasperis-Procesi Equation. Journal of Nonlinear Mathematical Physics vol. 12 10 (2005) – 10.2991/jnmp.2005.12.1.2
- Lai, S. & Wu, Y. Global solutions and blow-up phenomena to a shallow water equation. Journal of Differential Equations vol. 249 693–706 (2010) – 10.1016/j.jde.2010.03.008
- Kato, T. & Ponce, G. Commutator estimates and the euler and navier‐stokes equations. Communications on Pure and Applied Mathematics vol. 41 891–907 (1988) – 10.1002/cpa.3160410704