Authors

Janusz Grabowski, Katarzyna Grabowska, Paweł Urbański

Abstract

The Lagrangian description of mechanical systems and the Legendre Transformation (considered as a passage from the Lagrangian to the Hamiltonian formulation of the dynamics) for point-like objects, for which the infinitesimal configuration space is \( T M \), is based on the existence of canonical symplectic isomorphisms of double vector bundles \( T^* TM \), \( T^T^ M \), and \( TT^* M \), where the symplectic structure on \( TT^* M \) is the tangent lift of the canonical symplectic structure \( T^* M \). We show that there exists an analogous picture in the dynamics of objects for which the configuration space is \( \wedge^n T M \), if we make use of certain structures of graded bundles of degree \( n \), i.e. objects generalizing vector bundles (for which \( n=1 \)). For instance, the role of \( TT^M \) is played in our approach by the manifold \( \wedge^nT M\wedge^nT^M \), which is canonically a graded bundle of degree \( n \) over \( \wedge^nT M \). Dynamics of strings and the Plateau problem in statics are particular cases of this framework.

Citation

  • Journal: Journal of Geometric Mechanics
  • Year: 2014
  • Volume: 6
  • Issue: 4
  • Pages: 503–526
  • Publisher: American Institute of Mathematical Sciences (AIMS)
  • DOI: 10.3934/jgm.2014.6.503

BibTeX

@article{Grabowski_2014,
  title={{Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings}},
  volume={6},
  ISSN={1941-4897},
  DOI={10.3934/jgm.2014.6.503},
  number={4},
  journal={Journal of Geometric Mechanics},
  publisher={American Institute of Mathematical Sciences (AIMS)},
  author={Grabowski, Janusz and Grabowska, Katarzyna and Urbański, Paweł},
  year={2014},
  pages={503--526}
}

Download the bib file

References

  • Buttin, C. Théorie des opérateurs différentiels gradués sur les formes différentielles. Bulletin de la Société mathématique de France vol. 79 49–73 (1974) – 10.24033/bsmf.1769
  • F. Cantrijn, Hamiltonian structures on multisymplectic manifolds,. Rend. Sem. Mat. Univ. Pol. Torino (1996)
  • M. Campos, C., Guzmán, E. & Carlos Marrero, J. Classical field theories of first order and Lagrangian submanifolds of premultisymplectic manifolds. Journal of Geometric Mechanics vol. 4 1–26 (2012) – 10.3934/jgm.2012.4.1
  • Cariñena, J. F., Crampin, M. & Ibort, L. A. On the multisymplectic formalism for first order field theories. Differential Geometry and its Applications vol. 1 345–374 (1991) – 10.1016/0926-2245(91)90013-y
  • Echeverria-Enrı́quez, A., Muñoz-Lecanda, M. C. & Román-Roy, N. Geometry of multisymplectic Hamiltonian first-order field theories. Journal of Mathematical Physics vol. 41 7402–7444 (2000) – 10.1063/1.1308075
  • L. E. Evans, Partial Differential Equations,. Graduate Studies in Mathematics 19 (1998)
  • Forger, M., Paufler, C. & Römer, H. A general construction of poisson brackets on exact multusymplectic manifolds. Reports on Mathematical Physics vol. 51 187–195 (2003) – 10.1016/s0034-4877(03)80012-5
  • Forger, M., Paufler, C. & Römer, H. Hamiltonian multivector fields and Poisson forms in multisymplectic field theory. Journal of Mathematical Physics vol. 46 (2005) – 10.1063/1.2116320
  • FORGER, M. & GOMES, L. G. MULTISYMPLECTIC AND POLYSYMPLECTIC STRUCTURES ON FIBER BUNDLES. Reviews in Mathematical Physics vol. 25 1350018 (2013) – 10.1142/s0129055x13500189
  • GawĘdzki, K. On the geometrization of the canonical formalism in the classical field theory. Reports on Mathematical Physics vol. 3 307–326 (1972) – 10.1016/0034-4877(72)90014-6
  • Giachetta, G. & Mangiarotti, L. Constrained Hamiltonian systems and gauge theories. International Journal of Theoretical Physics vol. 34 2353–2371 (1995) – 10.1007/bf00670772
  • Giachetta, G., Mangiarotti, L. & Sardanashvily, G. Advanced Classical Field Theory. (2009) doi:10.1142/7189 – 10.1142/9789812838964
  • M. J. Gotay, Momentum maps and classical relativistic fields, Part I: Covariant field theory,. preprint
  • M. J. Gotay, Momentum maps and classical relativistic fields, Part II: Canonical analysis of field theories,. preprint
  • Grabowska, K. A Tulczyjew triple for classical fields. Journal of Physics A: Mathematical and Theoretical vol. 45 145207 (2012) – 10.1088/1751-8113/45/14/145207
  • Grabowska, K. Lagrangian and Hamiltonian formalism in Field Theory: A simple model. Journal of Geometric Mechanics vol. 2 375–395 (2010) – 10.3934/jgm.2010.2.375
  • Grabowska, K. & Grabowski, J. Variational calculus with constraints on general algebroids. Journal of Physics A: Mathematical and Theoretical vol. 41 175204 (2008) – 10.1088/1751-8113/41/17/175204
  • Grabowska, K. & Grabowski, J. Dirac algebroids in Lagrangian and Hamiltonian mechanics. Journal of Geometry and Physics vol. 61 2233–2253 (2011) – 10.1016/j.geomphys.2011.06.018
  • Grabowska, K. & Grabowski, J. Tulczyjew triples: From statics to field theory. Journal of Geometric Mechanics vol. 5 445–472 (2013) – 10.3934/jgm.2013.5.445
  • GRABOWSKA, K., URBAŃSKI, P. & GRABOWSKI, J. GEOMETRICAL MECHANICS ON ALGEBROIDS. International Journal of Geometric Methods in Modern Physics vol. 03 559–575 (2006) – 10.1142/s0219887806001259
  • GRABOWSKI, J. BRACKETS. International Journal of Geometric Methods in Modern Physics vol. 10 1360001 (2013) – 10.1142/s0219887813600013
  • Grabowski, J. & Rotkiewicz, M. Higher vector bundles and multi-graded symplectic manifolds. Journal of Geometry and Physics vol. 59 1285–1305 (2009) – 10.1016/j.geomphys.2009.06.009
  • Grabowski, J. & Rotkiewicz, M. Graded bundles and homogeneity structures. Journal of Geometry and Physics vol. 62 21–36 (2012) – 10.1016/j.geomphys.2011.09.004
  • Grabowski, J. & Urbanski, P. Tangent lifts of Poisson and related structures. Journal of Physics A: Mathematical and General vol. 28 6743–6777 (1995) – 10.1088/0305-4470/28/23/024
  • Grabowski, J. & Urbański, P. Algebroids — general differential calculi on vector bundles. Journal of Geometry and Physics vol. 31 111–141 (1999) – 10.1016/s0393-0440(99)00007-8
  • Günther, C. The polysymplectic Hamiltonian formalism in field theory and calculus of variations. I. The local case. Journal of Differential Geometry vol. 25 (1987) – 10.4310/jdg/1214440723
  • Kijowski, J. & Szczyrba, W. A canonical structure for classical field theories. Communications in Mathematical Physics vol. 46 183–206 (1976) – 10.1007/bf01608496
  • A Symplectic Framework for Field Theories. Lecture Notes in Physics (Springer Berlin Heidelberg, 1979). doi:10.1007/3-540-09538-1 – 10.1007/3-540-09538-1
  • I. Kolář, Gauge-natural transformations of some cotangent bundles,. Acta Univ. M. Belii ser. Mathematics (1997)
  • K. Konieczna, Double vector bundles and duality,. Arch. Math. (Brno) (1999)
  • Krupková, O. Hamiltonian field theory. Journal of Geometry and Physics vol. 43 93–132 (2002) – 10.1016/s0393-0440(01)00087-0
  • M. de León, Tulczyjew’s triples and lagrangian submanifolds in classical field theories,. in Applied Differential Geometry and Mechanics (eds. W. Sarlet and F. Cantrijn) (2003)
  • Libermann, P. & Marle, C.-M. Symplectic Geometry and Analytical Mechanics. (Springer Netherlands, 1987). doi:10.1007/978-94-009-3807-6 – 10.1007/978-94-009-3807-6
  • D. Lüst, Lectures on String Theory,. Lecture Notes in Physics (1989)
  • M. Łukasik, Rachunek Wariacyjny Niezale.zny od Parametryzacji. Przypadek Jednowymiarowy (Polish),. PhD Thesis (2012)
  • Martin, G. A Darboux theorem for multi-symplectic manifolds. Letters in Mathematical Physics vol. 16 133–138 (1988) – 10.1007/bf00402020
  • Pidello, G. & Tulczyjew, W. M. Derivations of differential forms on jet bundles. Annali di Matematica Pura ed Applicata vol. 147 249–265 (1987) – 10.1007/bf01762420
  • J. Pradines, Représentation des jets non holonomes par des morphismes vectoriels doubles soudés,. C. R. Acad. Sci. Paris (1974)
  • Roytenberg, D. On the structure of graded symplectic supermanifolds and Courant algebroids. Contemporary Mathematics 169–185 (2002) doi:10.1090/conm/315/05479 – 10.1090/conm/315/05479
  • Sardanashvily, G. Lagrangian dynamics of submanifolds. Relativistimechanics. Journal of Geometric Mechanics vol. 4 99–110 (2012) – 10.3934/jgm.2012.4.99
  • P. Ševera, Some title containing the words “homotopy” and “symplectic”, e.g. this one,. Travaux mathématiques (2005)
  • W. Tulczyjew, Hamiltonian systems, Lagrangian systems, and the Legendre transformation,. Symposia Math. (1974)
  • W. M. Tulczyjew, The Legendre transformation,. Ann. Inst. H. Poincaré Sect. A (N.S.) (1977)
  • Tulczyjew, W. M. A symplectic framework of linear field theories. Annali di Matematica Pura ed Applicata vol. 130 177–195 (1982) – 10.1007/bf01761494
  • W. M. Tulczyjew, Geometric Formulation of Physical Theories,. Bibliopolis (1989)
  • W. M. Tulczyjew, A slow and careful Legendre transformation for singular Lagrangians,. The Infeld Centennial Meeting (Warsaw (1999)
  • Vitagliano, L. Partial Differential Hamiltonian Systems. Canadian Journal of Mathematics vol. 65 1164–1200 (2013) – 10.4153/cjm-2012-055-0
  • P. Urbański, Double vector bundles in classical mechanics,. Rend. Sem. Matem. Torino (1996)
  • Voronov, T. Graded manifolds and Drinfeld doubles for Lie bialgebroids. Contemporary Mathematics 131–168 (2002) doi:10.1090/conm/315/05478 – 10.1090/conm/315/05478
  • Xin, Y. Minimal Submanifolds and Related Topics. Nankai Tracts in Mathematics (2003) doi:10.1142/5417 – 10.1142/9789812564382