Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings
Authors
Janusz Grabowski, Katarzyna Grabowska, Paweł Urbański
Abstract
The Lagrangian description of mechanical systems and the Legendre Transformation (considered as a passage from the Lagrangian to the Hamiltonian formulation of the dynamics) for point-like objects, for which the infinitesimal configuration space is \( T M \), is based on the existence of canonical symplectic isomorphisms of double vector bundles \( T^* TM \), \( T^T^ M \), and \( TT^* M \), where the symplectic structure on \( TT^* M \) is the tangent lift of the canonical symplectic structure \( T^* M \). We show that there exists an analogous picture in the dynamics of objects for which the configuration space is \( \wedge^n T M \), if we make use of certain structures of graded bundles of degree \( n \), i.e. objects generalizing vector bundles (for which \( n=1 \)). For instance, the role of \( TT^M \) is played in our approach by the manifold \( \wedge^nT M\wedge^nT^M \), which is canonically a graded bundle of degree \( n \) over \( \wedge^nT M \). Dynamics of strings and the Plateau problem in statics are particular cases of this framework.
Citation
- Journal: Journal of Geometric Mechanics
- Year: 2014
- Volume: 6
- Issue: 4
- Pages: 503–526
- Publisher: American Institute of Mathematical Sciences (AIMS)
- DOI: 10.3934/jgm.2014.6.503
BibTeX
@article{Grabowski_2014,
title={{Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings}},
volume={6},
ISSN={1941-4897},
DOI={10.3934/jgm.2014.6.503},
number={4},
journal={Journal of Geometric Mechanics},
publisher={American Institute of Mathematical Sciences (AIMS)},
author={Grabowski, Janusz and Grabowska, Katarzyna and Urbański, Paweł},
year={2014},
pages={503--526}
}
References
- Buttin, C. Théorie des opérateurs différentiels gradués sur les formes différentielles. Bulletin de la Société mathématique de France vol. 79 49–73 (1974) – 10.24033/bsmf.1769
- F. Cantrijn, Hamiltonian structures on multisymplectic manifolds,. Rend. Sem. Mat. Univ. Pol. Torino (1996)
- M. Campos, C., Guzmán, E. & Carlos Marrero, J. Classical field theories of first order and Lagrangian submanifolds of premultisymplectic manifolds. Journal of Geometric Mechanics vol. 4 1–26 (2012) – 10.3934/jgm.2012.4.1
- Cariñena, J. F., Crampin, M. & Ibort, L. A. On the multisymplectic formalism for first order field theories. Differential Geometry and its Applications vol. 1 345–374 (1991) – 10.1016/0926-2245(91)90013-y
- Echeverria-Enrı́quez, A., Muñoz-Lecanda, M. C. & Román-Roy, N. Geometry of multisymplectic Hamiltonian first-order field theories. Journal of Mathematical Physics vol. 41 7402–7444 (2000) – 10.1063/1.1308075
- L. E. Evans, Partial Differential Equations,. Graduate Studies in Mathematics 19 (1998)
- Forger, M., Paufler, C. & Römer, H. A general construction of poisson brackets on exact multusymplectic manifolds. Reports on Mathematical Physics vol. 51 187–195 (2003) – 10.1016/s0034-4877(03)80012-5
- Forger, M., Paufler, C. & Römer, H. Hamiltonian multivector fields and Poisson forms in multisymplectic field theory. Journal of Mathematical Physics vol. 46 (2005) – 10.1063/1.2116320
- FORGER, M. & GOMES, L. G. MULTISYMPLECTIC AND POLYSYMPLECTIC STRUCTURES ON FIBER BUNDLES. Reviews in Mathematical Physics vol. 25 1350018 (2013) – 10.1142/s0129055x13500189
- GawĘdzki, K. On the geometrization of the canonical formalism in the classical field theory. Reports on Mathematical Physics vol. 3 307–326 (1972) – 10.1016/0034-4877(72)90014-6
- Giachetta, G. & Mangiarotti, L. Constrained Hamiltonian systems and gauge theories. International Journal of Theoretical Physics vol. 34 2353–2371 (1995) – 10.1007/bf00670772
- Giachetta, G., Mangiarotti, L. & Sardanashvily, G. Advanced Classical Field Theory. (2009) doi:10.1142/7189 – 10.1142/9789812838964
- M. J. Gotay, Momentum maps and classical relativistic fields, Part I: Covariant field theory,. preprint
- M. J. Gotay, Momentum maps and classical relativistic fields, Part II: Canonical analysis of field theories,. preprint
- Grabowska, K. A Tulczyjew triple for classical fields. Journal of Physics A: Mathematical and Theoretical vol. 45 145207 (2012) – 10.1088/1751-8113/45/14/145207
- Grabowska, K. Lagrangian and Hamiltonian formalism in Field Theory: A simple model. Journal of Geometric Mechanics vol. 2 375–395 (2010) – 10.3934/jgm.2010.2.375
- Grabowska, K. & Grabowski, J. Variational calculus with constraints on general algebroids. Journal of Physics A: Mathematical and Theoretical vol. 41 175204 (2008) – 10.1088/1751-8113/41/17/175204
- Grabowska, K. & Grabowski, J. Dirac algebroids in Lagrangian and Hamiltonian mechanics. Journal of Geometry and Physics vol. 61 2233–2253 (2011) – 10.1016/j.geomphys.2011.06.018
- Grabowska, K. & Grabowski, J. Tulczyjew triples: From statics to field theory. Journal of Geometric Mechanics vol. 5 445–472 (2013) – 10.3934/jgm.2013.5.445
- GRABOWSKA, K., URBAŃSKI, P. & GRABOWSKI, J. GEOMETRICAL MECHANICS ON ALGEBROIDS. International Journal of Geometric Methods in Modern Physics vol. 03 559–575 (2006) – 10.1142/s0219887806001259
- GRABOWSKI, J. BRACKETS. International Journal of Geometric Methods in Modern Physics vol. 10 1360001 (2013) – 10.1142/s0219887813600013
- Grabowski, J. & Rotkiewicz, M. Higher vector bundles and multi-graded symplectic manifolds. Journal of Geometry and Physics vol. 59 1285–1305 (2009) – 10.1016/j.geomphys.2009.06.009
- Grabowski, J. & Rotkiewicz, M. Graded bundles and homogeneity structures. Journal of Geometry and Physics vol. 62 21–36 (2012) – 10.1016/j.geomphys.2011.09.004
- Grabowski, J. & Urbanski, P. Tangent lifts of Poisson and related structures. Journal of Physics A: Mathematical and General vol. 28 6743–6777 (1995) – 10.1088/0305-4470/28/23/024
- Grabowski, J. & Urbański, P. Algebroids — general differential calculi on vector bundles. Journal of Geometry and Physics vol. 31 111–141 (1999) – 10.1016/s0393-0440(99)00007-8
- Günther, C. The polysymplectic Hamiltonian formalism in field theory and calculus of variations. I. The local case. Journal of Differential Geometry vol. 25 (1987) – 10.4310/jdg/1214440723
- Kijowski, J. & Szczyrba, W. A canonical structure for classical field theories. Communications in Mathematical Physics vol. 46 183–206 (1976) – 10.1007/bf01608496
- A Symplectic Framework for Field Theories. Lecture Notes in Physics (Springer Berlin Heidelberg, 1979). doi:10.1007/3-540-09538-1 – 10.1007/3-540-09538-1
- I. Kolář, Gauge-natural transformations of some cotangent bundles,. Acta Univ. M. Belii ser. Mathematics (1997)
- K. Konieczna, Double vector bundles and duality,. Arch. Math. (Brno) (1999)
- Krupková, O. Hamiltonian field theory. Journal of Geometry and Physics vol. 43 93–132 (2002) – 10.1016/s0393-0440(01)00087-0
- M. de León, Tulczyjew’s triples and lagrangian submanifolds in classical field theories,. in Applied Differential Geometry and Mechanics (eds. W. Sarlet and F. Cantrijn) (2003)
- Libermann, P. & Marle, C.-M. Symplectic Geometry and Analytical Mechanics. (Springer Netherlands, 1987). doi:10.1007/978-94-009-3807-6 – 10.1007/978-94-009-3807-6
- D. Lüst, Lectures on String Theory,. Lecture Notes in Physics (1989)
- M. Łukasik, Rachunek Wariacyjny Niezale.zny od Parametryzacji. Przypadek Jednowymiarowy (Polish),. PhD Thesis (2012)
- Martin, G. A Darboux theorem for multi-symplectic manifolds. Letters in Mathematical Physics vol. 16 133–138 (1988) – 10.1007/bf00402020
- Pidello, G. & Tulczyjew, W. M. Derivations of differential forms on jet bundles. Annali di Matematica Pura ed Applicata vol. 147 249–265 (1987) – 10.1007/bf01762420
- J. Pradines, Représentation des jets non holonomes par des morphismes vectoriels doubles soudés,. C. R. Acad. Sci. Paris (1974)
- Roytenberg, D. On the structure of graded symplectic supermanifolds and Courant algebroids. Contemporary Mathematics 169–185 (2002) doi:10.1090/conm/315/05479 – 10.1090/conm/315/05479
- Sardanashvily, G. Lagrangian dynamics of submanifolds. Relativistimechanics. Journal of Geometric Mechanics vol. 4 99–110 (2012) – 10.3934/jgm.2012.4.99
- P. Ševera, Some title containing the words “homotopy” and “symplectic”, e.g. this one,. Travaux mathématiques (2005)
- W. Tulczyjew, Hamiltonian systems, Lagrangian systems, and the Legendre transformation,. Symposia Math. (1974)
- W. M. Tulczyjew, The Legendre transformation,. Ann. Inst. H. Poincaré Sect. A (N.S.) (1977)
- Tulczyjew, W. M. A symplectic framework of linear field theories. Annali di Matematica Pura ed Applicata vol. 130 177–195 (1982) – 10.1007/bf01761494
- W. M. Tulczyjew, Geometric Formulation of Physical Theories,. Bibliopolis (1989)
- W. M. Tulczyjew, A slow and careful Legendre transformation for singular Lagrangians,. The Infeld Centennial Meeting (Warsaw (1999)
- Vitagliano, L. Partial Differential Hamiltonian Systems. Canadian Journal of Mathematics vol. 65 1164–1200 (2013) – 10.4153/cjm-2012-055-0
- P. Urbański, Double vector bundles in classical mechanics,. Rend. Sem. Matem. Torino (1996)
- Voronov, T. Graded manifolds and Drinfeld doubles for Lie bialgebroids. Contemporary Mathematics 131–168 (2002) doi:10.1090/conm/315/05478 – 10.1090/conm/315/05478
- Xin, Y. Minimal Submanifolds and Related Topics. Nankai Tracts in Mathematics (2003) doi:10.1142/5417 – 10.1142/9789812564382