Authors

Chengzhi Qin, Bing Wang, Shanhui Fan, Peixiang Lu

Abstract

Parity‐time (PT) and anti‐parity‐time (anti‐PT) symmetries have provided important guiding principles in the research of non‐Hermitian physics. However, realizations of anti‐PT symmetry in photonic systems usually rely on optical nonlinearities and indirect‐coupling approaches. Here, they apply the channel interference principle mediated by synthetic gauge‐flux biasing in open‐cavity systems to construct anti‐PT symmetries. It is shown that a specific π‐flux biasing into a looped‐resonator array can force a frequency degeneracy between pairwise Bloch modes therein. By further coupling the array into two external waveguides with tailored positions of ports, the system near the degeneracy point can be described by an anti‐PT‐symmetric Hamiltonian. When a real gauge‐flux detuning is introduced, the system undergoes a spontaneous transition between anti‐PT and anti‐PT‐broken phases, through which the two extreme cases of complete channel‐drop tunneling and complete tunneling suppression can be switched. Finally, by superimposing a PT‐symmetric term onto the anti‐PT‐symmetric Hamiltonian via applying an imaginary gauge‐flux biasing, extreme channel‐drop amplifying effects can be further realized by exciting the “lasing” mode under the critical‐coupling condition. The work bridges the physical connection between synthetic gauge field and anti‐PT symmetry. This paradigm may also find many applications from optical routing, and switching to buffering and amplifying on a chip–scale platform.

Citation

  • Journal: Laser & Photonics Reviews
  • Year: 2024
  • Volume: 18
  • Issue: 4
  • Pages:
  • Publisher: Wiley
  • DOI: 10.1002/lpor.202300458

BibTeX

@article{Qin_2024,
  title={{Gauge‐Flux‐Induced Anti‐Pt Phase Transitions for Extreme Control of Channel‐Drop Tunneling}},
  volume={18},
  ISSN={1863-8899},
  DOI={10.1002/lpor.202300458},
  number={4},
  journal={Laser & Photonics Reviews},
  publisher={Wiley},
  author={Qin, Chengzhi and Wang, Bing and Fan, Shanhui and Lu, Peixiang},
  year={2024}
}

Download the bib file

References

  • Hatami-Hanza, H., Mostofi, A. & Chu, P. L. A multilevel soliton communication system. J. Lightwave Technol. 15, 6–19 (1997) – 10.1109/50.552109
  • Fan, S., Villeneuve, P. R., Joannopoulos, J. D. & Haus, H. A. Channel Drop Tunneling through Localized States. Phys. Rev. Lett. 80, 960–963 (1998) – 10.1103/physrevlett.80.960
  • Fan, S. et al. Theoretical analysis of channel drop tunneling processes. Phys. Rev. B 59, 15882–15892 (1999) – 10.1103/physrevb.59.15882
  • Jiang, W. & Chen, R. T. Multichannel Optical Add-Drop Processes in Symmetrical Waveguide-Resonator Systems. Phys. Rev. Lett. 91, (2003) – 10.1103/physrevlett.91.213901
  • Wang, Z. & Fan, S. Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines. Phys. Rev. E 68, (2003) – 10.1103/physreve.68.066616
  • Suh, W. & Fan, S. All-pass transmission or flattop reflection filters using a single photonic crystal slab. Applied Physics Letters 84, 4905–4907 (2004) – 10.1063/1.1763221
  • Wiersig, J. Formation of Long-Lived, Scarlike Modes near Avoided Resonance Crossings in Optical Microcavities. Phys. Rev. Lett. 97, (2006) – 10.1103/physrevlett.97.253901
  • Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020) – 10.1126/science.aaz3985
  • Verslegers, L., Yu, Z., Ruan, Z., Catrysse, P. B. & Fan, S. From Electromagnetically Induced Transparency to Superscattering with a Single Structure: A Coupled-Mode Theory for Doubly Resonant Structures. Phys. Rev. Lett. 108, (2012) – 10.1103/physrevlett.108.083902
  • Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013) – 10.1038/nature12289
  • Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat Rev Mater 1, (2016) – 10.1038/natrevmats.2016.48
  • Sadreev, A. F. Interference traps waves in an open system: bound states in the continuum. Rep. Prog. Phys. 84, 055901 (2021) – 10.1088/1361-6633/abefb9
  • Zhou H., Optica (2016)
  • Yin, X., Jin, J., Soljačić, M., Peng, C. & Zhen, B. Observation of topologically enabled unidirectional guided resonances. Nature 580, 467–471 (2020) – 10.1038/s41586-020-2181-4
  • Bender, C. M. & Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians HavingPTSymmetry. Phys. Rev. Lett. 80, 5243–5246 (1998) – 10.1103/physrevlett.80.5243
  • Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam Dynamics inPTSymmetric Optical Lattices. Phys. Rev. Lett. 100, (2008) – 10.1103/physrevlett.100.103904
  • Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nature Phys 6, 192–195 (2010) – 10.1038/nphys1515
  • Özdemir, Ş. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019) – 10.1038/s41563-019-0304-9
  • Ge, L. & Türeci, H. E. AntisymmetricPT-photonic structures with balanced positive- and negative-index materials. Phys. Rev. A 88, (2013) – 10.1103/physreva.88.053810
  • Yang, Y. et al. Unconventional Singularity in Anti-Parity-Time Symmetric Cavity Magnonics. Phys. Rev. Lett. 125, (2020) – 10.1103/physrevlett.125.147202
  • Li, Z. et al. NON-HERMITIAN ELECTROMAGNETIC METASURFACES AT EXCEPTIONAL POINTS (INVITED REVIEW). PIER 171, 1–20 (2021) – 10.2528/pier21051703
  • Yan, Q., Chen, H. & Yang, Y. NON-HERMITIAN SKIN EFFECT AND DELOCALIZED EDGE STATES IN PHOTONIC CRYSTALS WITH ANOMALOUS PARITY-TIME SYMMETRY. PIER 172, 33–40 (2021) – 10.2528/pier21111602
  • Peng, P. et al. Anti-parity–time symmetry with flying atoms. Nature Phys 12, 1139–1145 (2016) – 10.1038/nphys3842
  • Jiang, Y. et al. Anti-Parity-Time Symmetric Optical Four-Wave Mixing in Cold Atoms. Phys. Rev. Lett. 123, (2019) – 10.1103/physrevlett.123.193604
  • Choi, Y., Hahn, C., Yoon, J. W. & Song, S. H. Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators. Nat Commun 9, (2018) – 10.1038/s41467-018-04690-y
  • Li, Y. et al. Anti–parity-time symmetry in diffusive systems. Science 364, 170–173 (2019) – 10.1126/science.aaw6259
  • Zhang, F., Feng, Y., Chen, X., Ge, L. & Wan, W. Synthetic Anti-PT Symmetry in a Single Microcavity. Phys. Rev. Lett. 124, (2020) – 10.1103/physrevlett.124.053901
  • Bergman, A. et al. Observation of anti-parity-time-symmetry, phase transitions and exceptional points in an optical fibre. Nat Commun 12, (2021) – 10.1038/s41467-020-20797-7
  • Zhang, X.-L., Jiang, T. & Chan, C. T. Dynamically encircling an exceptional point in anti-parity-time symmetric systems: asymmetric mode switching for symmetry-broken modes. Light Sci Appl 8, (2019) – 10.1038/s41377-019-0200-8
  • Liu, W. et al. On‐Chip Chiral Mode Switching by Encircling an Exceptional Point in an Anti‐Parity‐Time Symmetric System. Laser & Photonics Reviews 16, (2022) – 10.1002/lpor.202100675
  • Feng, Z. & Sun, X. Harnessing Dynamical Encircling of an Exceptional Point in AntiPT</mml:math-Symmetric Integrated Photonic Systems. Phys. Rev. Lett. 129, (2022) -- [10.1103/physrevlett.129.273601](https://doi.org/10.1103/physrevlett.129.273601)
  • Zhang, J., Feng, Z. & Sun, X. Realization of Bound States in the Continuum in Anti‐PT‐Symmetric Optical Systems: A Proposal and Analysis. Laser & Photonics Reviews 17, (2022) – 10.1002/lpor.202200079
  • Zhang, H. et al. Breaking Anti-PT Symmetry by Spinning a Resonator. Nano Lett. 20, 7594–7599 (2020) – 10.1021/acs.nanolett.0c03119
  • Fang, K., Yu, Z. & Fan, S. Photonic Aharonov-Bohm Effect Based on Dynamic Modulation. Phys. Rev. Lett. 108, (2012) – 10.1103/physrevlett.108.153901
  • Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nature Photon 6, 782–787 (2012) – 10.1038/nphoton.2012.236
  • Lin Q., Phys. Rev. X (2014)
  • Qin, C. et al. Spectrum Control through Discrete Frequency Diffraction in the Presence of Photonic Gauge Potentials. Phys. Rev. Lett. 120, (2018) – 10.1103/physrevlett.120.133901
  • Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nature Phys 7, 907–912 (2011) – 10.1038/nphys2063
  • Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nature Photon 7, 1001–1005 (2013) – 10.1038/nphoton.2013.274
  • Zhao, H. et al. Non-Hermitian topological light steering. Science 365, 1163–1166 (2019) – 10.1126/science.aay1064
  • Qin, C., Alù, A. & Wong, Z. J. Pseudospin–Orbit Coupling for Chiral Light Routings in Gauge-Flux-Biased Coupled Microring Resonators. ACS Photonics 9, 586–596 (2022) – 10.1021/acsphotonics.1c01561
  • Longhi, S., Gatti, D. & Della Valle, G. Non-Hermitian transparency and one-way transport in low-dimensional lattices by an imaginary gauge field. Phys. Rev. B 92, (2015) – 10.1103/physrevb.92.094204
  • Longhi, S. Tight-binding lattices with an oscillating imaginary gauge field. Phys. Rev. A 94, (2016) – 10.1103/physreva.94.022102
  • Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569 (2003) – 10.1364/josaa.20.000569
  • Wonjoo Suh, Zheng Wang & Shanhui Fan. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron. 40, 1511–1518 (2004) – 10.1109/jqe.2004.834773
  • Alpeggiani F., Phys. Rev. X (2017)
  • Krasnok, A. et al. Anomalies in light scattering. Adv. Opt. Photon. 11, 892 (2019) – 10.1364/aop.11.000892
  • Sauvan, C., Hugonin, J. P., Maksymov, I. S. & Lalanne, P. Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators. Phys. Rev. Lett. 110, (2013) – 10.1103/physrevlett.110.237401
  • Schomerus, H. Quantum Noise and Self-Sustained Radiation ofPT-Symmetric Systems. Phys. Rev. Lett. 104, (2010) – 10.1103/physrevlett.104.233601
  • Chong, Y. D., Ge, L. & Stone, A. D. PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems. Phys. Rev. Lett. 106, (2011) – 10.1103/physrevlett.106.093902
  • Cai, M., Painter, O. & Vahala, K. J. Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System. Phys. Rev. Lett. 85, 74–77 (2000) – 10.1103/physrevlett.85.74
  • Yariv, A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photon. Technol. Lett. 14, 483–485 (2002) – 10.1109/68.992585
  • Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502–506 (2018) – 10.1038/s41586-018-0478-3
  • Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photon. 16, 95–108 (2022) – 10.1038/s41566-021-00945-1
  • Xiang, C. et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78–85 (2023) – 10.1038/s41586-023-06251-w
  • Bandres, M. A. et al. Topological insulator laser: Experiments. Science 359, (2018) – 10.1126/science.aar4005
  • Wong, Z. J. et al. Lasing and anti-lasing in a single cavity. Nature Photon 10, 796–801 (2016) – 10.1038/nphoton.2016.216