Authors

Dunwen Wei, Wenjie Ge

Abstract

A robot system would inevitably cause unpredictable collisions in an unknown or unstructured environment. In this paper, the controllability conditions of a general robot system with compliant actuators are proposed to judge and assess the contact constraints based on Port-based Hamiltonian. In order to satisfy the proposed controllability conditions, one fuzzy coordinated control method inspired from the pathfinding of a blind or normal person in dark environment is proposed to deal with the problem of contact constraint. This method achieves velocity–torque combined control without using force or vision sensors compared with conventional methods. Finally, the experiments validate the feasibility of the controllability conditions to deal with contact constraint problems. The results show that the fuzzy coordinated controller can work more efficiently and effectively to detect and respond to contact constraints compared with the proposed proportional control.

Citation

  • Journal: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
  • Year: 2016
  • Volume: 230
  • Issue: 7
  • Pages: 640–650
  • Publisher: SAGE Publications
  • DOI: 10.1177/0959651816643668

BibTeX

@article{Wei_2016,
  title={{Fuzzy coordinated control of contact constraint problem for robot system with compliant actuators}},
  volume={230},
  ISSN={2041-3041},
  DOI={10.1177/0959651816643668},
  number={7},
  journal={Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering},
  publisher={SAGE Publications},
  author={Wei, Dunwen and Ge, Wenjie},
  year={2016},
  pages={640--650}
}

Download the bib file

References

  • Albu-Schaffer, A. et al. Soft robotics. IEEE Robot. Automat. Mag. 15, 20–30 (2008) – 10.1109/mra.2008.927979
  • Trivedi, D., Rahn, C. D., Kier, W. M. & Walker, I. D. Soft Robotics: Biological Inspiration, State of the Art, and Future Research. Applied Bionics and Biomechanics 5, 99–117 (2008) – 10.1080/11762320802557865
  • Ishida, T. & Kuroki, Y. Sensor system of a small biped entertainment robot. Advanced Robotics 18, 1039–1052 (2004) – 10.1163/1568553042674699
  • Hurst JW, Proceedings of 2004 IEEE international conference on robotics & automation(ICRA)
  • Sayyad, A., Seth, B. & Seshu, P. Single-legged hopping robotics research—A review. Robotica 25, 587–613 (2007) – 10.1017/s0263574707003487
  • Hogan, N. Impedance Control: An Approach to Manipulation: Part II—Implementation. Journal of Dynamic Systems, Measurement, and Control 107, 8–16 (1985) – 10.1115/1.3140713
  • Morrell JB, 1995 IEEE/RSJ international conference on intelligent robots and systems 95.’Human robot interaction and cooperative robots’
  • Zinn, M., Roth, B., Khatib, O. & Salisbury, J. K. A New Actuation Approach for Human Friendly Robot Design. The International Journal of Robotics Research 23, 379–398 (2004) – 10.1177/0278364904042193
  • Paccot F, 2008 IEEE international conference on robotics and automation (ICRA)
  • Dahiya, R. S., Metta, G., Valle, M. & Sandini, G. Tactile Sensing—From Humans to Humanoids. IEEE Trans. Robot. 26, 1–20 (2010) – 10.1109/tro.2009.2033627
  • Dahiya, R. S., Mittendorfer, P., Valle, M., Cheng, G. & Lumelsky, V. J. Directions Toward Effective Utilization of Tactile Skin: A Review. IEEE Sensors J. 13, 4121–4138 (2013) – 10.1109/jsen.2013.2279056
  • González Rodríguez, A., Chacón, J. M., Donoso, A. & González Rodríguez, A. G. Design of an adjustable-stiffness spring: Mathematical modeling and simulation, fabrication and experimental validation. Mechanism and Machine Theory 46, 1970–1979 (2011) – 10.1016/j.mechmachtheory.2011.07.002
  • Visser, L. C., Carloni, R. & Stramigioli, S. Energy-Efficient Variable Stiffness Actuators. IEEE Trans. Robot. 27, 865–875 (2011) – 10.1109/tro.2011.2150430
  • Tonietti G, Experimental robotics IX: The 9th International Symposium on Experimental Robotics
  • Paluska, D. & Herr, H. The effect of series elasticity on actuator power and work output: Implications for robotic and prosthetic joint design. Robotics and Autonomous Systems 54, 667–673 (2006) – 10.1016/j.robot.2006.02.013
  • Vanderborght, B. et al. Variable impedance actuators: A review. Robotics and Autonomous Systems 61, 1601–1614 (2013) – 10.1016/j.robot.2013.06.009
  • Ham, R., Sugar, T., Vanderborght, B., Hollander, K. & Lefeber, D. Compliant actuator designs. IEEE Robot. Automat. Mag. 16, 81–94 (2009) – 10.1109/mra.2009.933629
  • Claros M, 35th annual IEEE international conference of engineering in medicine and biology society (EMBC)
  • Choi, J., Hong, S., Lee, W., Kang, S. & Kim, M. A Robot Joint With Variable Stiffness Using Leaf Springs. IEEE Trans. Robot. 27, 229–238 (2011) – 10.1109/tro.2010.2100450
  • Jafari A, 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS)
  • Eiberger O, ICRA
  • Petković, D., Issa, M., Pavlović, N. D. & Zentner, L. Design of compliant robotic joint with embedded‐sensing elements of conductive silicone rubber. Industrial Robot: An International Journal 40, 143–157 (2013) – 10.1108/01439911311297748
  • Petković, D., Issa, M., Pavlović, N. D. & Zentner, L. Application of the TRIZ creativity enhancement approach to design of passively compliant robotic joint. Int J Adv Manuf Technol 67, 865–875 (2012) – 10.1007/s00170-012-4530-4
  • Calanca, A., Muradore, R. & Fiorini, P. A Review of Algorithms for Compliant Control of Stiff and Fixed-Compliance Robots. IEEE/ASME Trans. Mechatron. 21, 613–624 (2016) – 10.1109/tmech.2015.2465849
  • Albu-Schäffer, A., Ott, C. & Hirzinger, G. A Unified Passivity-based Control Framework for Position, Torque and Impedance Control of Flexible Joint Robots. The International Journal of Robotics Research 26, 23–39 (2007) – 10.1177/0278364907073776
  • Palli G, Robotics and automation, 2007 IEEE international conference on
  • Petkovic´, D. & D. Pavlovic´, N. Compliant multi-fingered passively adaptive robotic gripper. Multidiscipline Modeling in Materials and Structures 9, 538–547 (2013) – 10.1108/mmms-11-2012-0017
  • Issa, M., Petkovic, D., Pavlovic, N. D. & Zentner, L. Sensor elements made of conductive silicone rubber for passively compliant gripper. Int J Adv Manuf Technol 69, 1527–1536 (2013) – 10.1007/s00170-013-5085-8
  • Petković, D., Issa, M., Pavlović, N. D. & Zentner, L. Potential of adaptive neuro-fuzzy inference system for contact positions detection of sensing structure. Measurement 61, 234–242 (2015) – 10.1016/j.measurement.2014.10.040
  • Petković, D. et al. Determining the joints most strained in an underactuated robotic finger by adaptive neuro-fuzzy methodology. Advances in Engineering Software 77, 28–34 (2014) – 10.1016/j.advengsoft.2014.07.007
  • Petković, D., Shamshirband, S., Abbasi, A., Kiani, K. & Al-Shammari, E. T. Prediction of contact forces of underactuated finger by adaptive neuro fuzzy approach. Mechanical Systems and Signal Processing 64–65, 520–527 (2015) – 10.1016/j.ymssp.2015.03.013
  • Piltan F, Int J Control Automat (2011)
  • Lin, C.-K. Nonsingular Terminal Sliding Mode Control of Robot Manipulators Using Fuzzy Wavelet Networks. IEEE Trans. Fuzzy Syst. 14, 849–859 (2006) – 10.1109/tfuzz.2006.879982
  • Kim, E. Output Feedback Tracking Control of Robot Manipulators With Model Uncertainty via Adaptive Fuzzy Logic. IEEE Trans. Fuzzy Syst. 12, 368–378 (2004) – 10.1109/tfuzz.2004.825062
  • Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-010.1007/978-3-642-03196-0
  • Petrella, R. & Tursini, M. An Embedded System for Position and Speed Measurement Adopting Incremental Encoders. IEEE Trans. on Ind. Applicat. 44, 1436–1444 (2008) – 10.1109/tia.2008.2002167
  • Tsuji, T., Hashimoto, T., Kobayashi, H., Mizuochi, M. & Ohnishi, K. A Wide-Range Velocity Measurement Method for Motion Control. IEEE Trans. Ind. Electron. 56, 510–519 (2009) – 10.1109/tie.2008.2003208