Authors

Jin-Song 劲松 Huang 黄, Jing-Lan 菁兰 Hu 胡, Yan-Ling 艳玲 Li 李, Zhong-Hui 中辉 Xu 徐

Abstract

We propose a frequency-tunable router of single photons with high routing efficiency, which is constructed by two waveguides mediately linked by a single-mode whispering gallery resonator with a driven three-level emitter. Quantum routing probability in the output port is obtained via the real-space Hamiltonian. By adjusting the resonator–emitter coupling and the drive, the desired continuous central frequencies for the resonance peaks of routing photons can be manipulated nearly linearly, with the assistance of Rabi splitting effect and optical Stark shift. The proposed routing system may provide potential applications in designing other frequency-modulation quantum optical devices, such as multiplexers, filters, and so on.

Citation

  • Journal: Chinese Physics B
  • Year: 2024
  • Volume: 33
  • Issue: 6
  • Pages: 064202
  • Publisher: IOP Publishing
  • DOI: 10.1088/1674-1056/ad362a

BibTeX

@article{Huang__2024,
  title={{Frequency-tunable single-photon router based on a microresonator containing a driven three-level emitter}},
  volume={33},
  ISSN={2058-3834},
  DOI={10.1088/1674-1056/ad362a},
  number={6},
  journal={Chinese Physics B},
  publisher={IOP Publishing},
  author={Huang 黄, Jin-Song 劲松 and Hu 胡, Jing-Lan 菁兰 and Li 李, Yan-Ling 艳玲 and Xu 徐, Zhong-Hui 中辉},
  year={2024},
  pages={064202}
}

Download the bib file

References

  • Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008) – 10.1038/nature07127
  • Goban, A. et al. Atom–light interactions in photonic crystals. Nat Commun 5, (2014) – 10.1038/ncomms4808
  • Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014) – 10.1126/science.1254699
  • Li, X. & Wei, L. F. Designable single-photon quantum routings with atomic mirrors. Phys. Rev. A 92, (2015) – 10.1103/physreva.92.063836
  • Huang, J.-S., Zhong, J.-T., Li, Y.-L., Xu, Z.-H. & Xiao, Q.-S. Efficient single-photon routing in a double-waveguide system with a mirror. Quantum Inf Process 19, (2020) – 10.1007/s11128-020-02789-0
  • Wu, J.-N., Dong, J., Xu, Y., Zou, B. & Zhang, Y. Multichannel Adjustable Single-Photon Router Based on Large Detuning. Phys. Rev. Applied 18, (2022) – 10.1103/physrevapplied.18.054007
  • Zhao, Y.-J., Tan, N., Yu, D., Liu, B. & Liu, W.-M. Tunable quantum switcher and router of single atoms using localized artificial magnetic fields. Phys. Rev. Research 2, (2020) – 10.1103/physrevresearch.2.033484
  • Hoi, I.-C. et al. Demonstration of a Single-Photon Router in the Microwave Regime. Phys. Rev. Lett. 107, (2011) – 10.1103/physrevlett.107.073601
  • Xia, K. & Twamley, J. All-Optical Switching and Router via the Direct Quantum Control of Coupling between Cavity Modes. Phys. Rev. X 3, (2013) – 10.1103/physrevx.3.031013
  • Zhou, L., Yang, L.-P., Li, Y. & Sun, C. P. Quantum Routing of Single Photons with a Cyclic Three-Level System. Phys. Rev. Lett. 111, (2013) – 10.1103/physrevlett.111.103604
  • Lu, J., Wang, Z. H. & Zhou, L. T-shaped single-photon router. Opt. Express 23, 22955 (2015) – 10.1364/oe.23.022955
  • Huang, J.-S., Wang, J.-W., Li, Y.-L., Wang, Y. & Huang, Y.-W. Tunable quantum routing via asymmetric intercavity couplings. Quantum Inf Process 18, (2019) – 10.1007/s11128-019-2176-y
  • Hu, C. Y. Spin-based single-photon transistor, dynamic random access memory, diodes, and routers in semiconductors. Phys. Rev. B 94, (2016) – 10.1103/physrevb.94.245307
  • Hu, C. Y. Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity. Sci Rep 7, (2017) – 10.1038/srep45582
  • Agarwal, G. S. & Huang, S. Optomechanical systems as single-photon routers. Phys. Rev. A 85, (2012) – 10.1103/physreva.85.021801
  • Li, X., Zhang, W.-Z., Xiong, B. & Zhou, L. Single-photon multi-ports router based on the coupled cavity optomechanical system. Sci Rep 6, (2016) – 10.1038/srep39343
  • Aoki, T. et al. Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity. Phys. Rev. Lett. 102, (2009) – 10.1103/physrevlett.102.083601
  • Cao, C. et al. Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Opt. Express 25, 16931 (2017) – 10.1364/oe.25.016931
  • Huang, J.-S., Wang, J.-W., Wang, Y., Li, Y.-L. & Huang, Y.-W. Control of single-photon routing in a T-shaped waveguide by another atom. Quantum Inf Process 17, (2018) – 10.1007/s11128-018-1850-9
  • Zhang, J.-H., He, D.-Y., Luo, G.-Y., Wang, B.-D. & Huang, J.-S. Bidirectional highly-efficient quantum routing in a T-bulge-shaped waveguide*. Chinese Phys. B 30, 034204 (2021) – 10.1088/1674-1056/abd38c
  • Gonzalez-Ballestero, C., Moreno, E., Garcia-Vidal, F. J. & Gonzalez-Tudela, A. Nonreciprocal few-photon routing schemes based on chiral waveguide-emitter couplings. Phys. Rev. A 94, (2016) – 10.1103/physreva.94.063817
  • Yan, C.-H., Li, Y., Yuan, H. & Wei, L. F. Targeted photonic routers with chiral photon-atom interactions. Phys. Rev. A 97, (2018) – 10.1103/physreva.97.023821
  • Li, X. & Wei, L. F. Ideal photonic absorption, emission, and routings in chiral waveguides. Optics Communications 425, 13–18 (2018) – 10.1016/j.optcom.2018.05.003
  • Liu, J.-S., Yang, Y., Lu, J. & Zhou, L. Quantum routing of few photons using a nonlinear cavity coupled to two chiral waveguides. Chinese Phys. B 31, 110301 (2022) – 10.1088/1674-1056/ac7f8f
  • Sun, X.-J., Liu, W.-X., Chen, H. & Li, H.-R. Tunable single-photon nonreciprocal scattering and targeted router in a giant atom-waveguide system with chiral couplings. Commun. Theor. Phys. 75, 035103 (2023) – 10.1088/1572-9494/acb6ee
  • Del’Haye, P. et al. Octave Spanning Tunable Frequency Comb from a Microresonator. Phys. Rev. Lett. 107, (2011) – 10.1103/physrevlett.107.063901
  • Miller, S. A. et al. Tunable frequency combs based on dual microring resonators. Opt. Express 23, 21527 (2015) – 10.1364/oe.23.021527
  • Cai, G., Lu, Y., Ma, X.-S., Cheng, M.-T. & Huang, X. Frequency tunable single photon diode based on giant atom coupling to a waveguide. Opt. Express 31, 33015 (2023) – 10.1364/oe.498207
  • Khani, S., Danaie, M. & Rezaei, P. Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Optics Communications 420, 147–156 (2018) – 10.1016/j.optcom.2018.03.047
  • Khani, S., Danaie, M. & Rezaei, P. Design of a Single-Mode Plasmonic Bandpass Filter Using a Hexagonal Resonator Coupled to Graded-Stub Waveguides. Plasmonics 14, 53–62 (2018) – 10.1007/s11468-018-0777-4
  • Ren, L., Yuan, S., Zhu, S., Shi, L. & Zhang, X. Tunable kilohertz microwave photonic bandpass filter based on backscattering in a microresonator. Opt. Lett. 47, 4572 (2022) – 10.1364/ol.468442
  • Zhang, B. et al. Bandwidth Tunable Optical Bandpass Filter Based on Parity-Time Symmetry. Micromachines 13, 89 (2022) – 10.3390/mi13010089
  • Tian, M.-E., Long, Z.-H., Feng, L.-J., He, L.-L. & Zhang, T.-L. Switchable and tunable triple-channel bandpass filter. Chinese Phys. B 31, 078401 (2022) – 10.1088/1674-1056/ac4f4f
  • Zhang, X.-W. et al. Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection. Chinese Phys. B 31, 114101 (2022) – 10.1088/1674-1056/ac6015
  • Han, L. et al. A novel low-loss four-bit bandpass filter using RF MEMS switches. Chinese Phys. B 31, 018506 (2022) – 10.1088/1674-1056/ac1b95
  • Huang, J.-S., Feng, X.-M., Xu, Z.-H., Li, Y.-L. & Wu, K.-Y. Tunable bandpass routers of single photons with three-level emitters. Quantum Inf Process 22, (2023) – 10.1007/s11128-023-04039-5
  • Shen, J.-T. & Fan, S. Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 79, (2009) – 10.1103/physreva.79.023837
  • Witthaut, D. & Sørensen, A. S. Photon scattering by a three-level emitter in a one-dimensional waveguide. New J. Phys. 12, 043052 (2010) – 10.1088/1367-2630/12/4/043052
  • Srinivasan, K. & Painter, O. Mode coupling and cavity–quantum-dot interactions in a fiber-coupled microdisk cavity. Phys. Rev. A 75, (2007) – 10.1103/physreva.75.023814