Authors

L.O. Chua, R. Brown, N. Hamilton

Abstract

The twist-and-flip circuit contains only three circuit elements: two linear capacitors connected across the ports of a gyrator characterized by a nonlinear gyration conductance function g(v/sub 1/, v/sub 2/). When driven by a square-wave voltage source of amplitude a and frequency omega , the resulting circuit is described by a system of two nonautonomous state equations. For almost any choice of nonlinear g(v/sub 1/, v/sub 2/)>0, and over a very wide region of the a- omega parameter plane, the twist-and-flip circuit is imbued with the full repertoire of complicated chaotic dynamics typical of those predicted by the classic KAM theorem from Hamiltonian dynamics. The significance of the twist-and-flip circuit is that its associated nonautonomous state equations have an explicit Poincare map, called the twist-and-flip map, thereby making it possible to analyze and understand the intricate dynamics of the system, including its many fractal manifestations. The focus is on the many fractals associated with the twist-and-flip circuit. >

Citation

  • Journal: Proceedings of the IEEE
  • Year: 1993
  • Volume: 81
  • Issue: 10
  • Pages: 1466–1491
  • Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  • DOI: 10.1109/5.241508

BibTeX

@article{Chua_1993,
  title={{Fractals in the twist-and-flip circuit}},
  volume={81},
  ISSN={0018-9219},
  DOI={10.1109/5.241508},
  number={10},
  journal={Proceedings of the IEEE},
  publisher={Institute of Electrical and Electronics Engineers (IEEE)},
  author={Chua, L.O. and Brown, R. and Hamilton, N.},
  year={1993},
  pages={1466--1491}
}

Download the bib file

References

  • chua, Linear and Nonlinear Circuits (1985)
  • Parker, T. S. & Chua, L. O. Practical Numerical Algorithms for Chaotic Systems. (Springer New York, 1989). doi:10.1007/978-1-4612-3486-9 – 10.1007/978-1-4612-3486-9
  • devaney, An Introduction to Chaotic Dynamical Systems (1989)
  • Hénon, M. Numerical study of quadratic area-preserving mappings. Quart. Appl. Math. 27, 291–312 (1969) – 10.1090/qam/253513
  • BROWN, R. & CHUA, L. GENERALIZING THE TWIST-AND-FLIP PARADIGM: II. Int. J. Bifurcation Chaos 02, 183–191 (1992) – 10.1142/s0218127492000173
  • BROWN, R., CHUA, L. & POPP, B. IS SENSITIVE DEPENDENCE ON INITIAL CONDITIONS NATURE’S SENSORY DEVICE? Int. J. Bifurcation Chaos 02, 193–199 (1992) – 10.1142/s0218127492000185
  • Mackay, R. S., Meiss, J. D. & Percival, I. C. Transport in Hamiltonian systems. Physica D: Nonlinear Phenomena 13, 55–81 (1984) – 10.1016/0167-2789(84)90270-7
  • davis, Introduction to Nonlinear Differential and Integral Equations (1960)
  • hirsch, Chaos Dynamics and Fractals (1985)
  • Hirsch, M. W. & Pugh, C. C. Stable manifolds for hyperbolic sets. Bull. Amer. Math. Soc. 75, 149–152 (1969) – 10.1090/s0002-9904-1969-12184-1
  • Kennedy, M. P. Robust OP Amp Realization of Chua’s Circuit. Frequenz 46, (1992) – 10.1515/freq.1992.46.3-4.66
  • Chua’s Circuit: A Paradigm for Chaos. J Circuits Syst Computers (1993)
  • BROWN, R. & CHUA, L. HORSESHOES IN THE TWIST-AND-FLIP MAP. Int. J. Bifurcation Chaos 01, 235–252 (1991) – 10.1142/s0218127491000166
  • Kennedy, M. P., Krieg, K. R. & Chua, L. O. The devil’s staircase: the electrical engineer’s fractal. IEEE Trans. Circuits Syst. 36, 1113–1139 (1989) – 10.1109/31.192428
  • arrowsmith, An Introduction to dynamical Systems (1990)
  • BROWN, R. & CHUA, L. GENERALIZING THE TWIST-AND-FLIP PARADIGM. Int. J. Bifurcation Chaos 01, 385–416 (1991) – 10.1142/s0218127491000312
  • The genesis of Chua’s circuit. Archiv fur Elektronik und Ubertragungstechnik (1992)
  • Kennedy, M. P. Three steps to chaos. I. Evolution. IEEE Trans. Circuits Syst. I 40, 640–656 (1993) – 10.1109/81.246140
  • chua, Introduction to Nonlinear Network Theory (1969)
  • Guckenheimer, J. & Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences (Springer New York, 1983). doi:10.1007/978-1-4612-1140-2 – 10.1007/978-1-4612-1140-2
  • Smale, S. Diffeomorphisms with Many Periodic Points. Differential and Combinatorial Topology 63–80 (1965) doi:10.1515/9781400874842-006 – 10.1515/9781400874842-006
  • nitecki, Differentiable Dynamics (1971)