Authors

Xi Fu, Jian Lin, Guangyao Liang, Wenhu Liao, Liming Li

Abstract

This study examines the photogalvanic effect in three distinct isomers of BeP2 monolayers. The results demonstrated that 1H-BeP2 monolayer possesses pronounced anisotropy on photocurrents along the armchair and zigzag directions, whereas penta-BeP2 and planar-BeP2 monolayers exhibit distinctive photocurrent responses. Furthermore, there presents that defect engineering can markedly enhance the photogalvanic effect in three BeP2 photodetectors. It is noteworthy that the 1H-BeP2-zigzag photodetector exhibits exceptional sensitivity on polarization detection. Therefore, this study not only broadens the scope for the applications of BeP2 monolayers in the fields of optoelectronics and nanoelectronics, but also highlights their significant values in the detection of polarization.

Keywords

Photogalvanic effect; BeP2 monolayer; Photodetector; High sensitivity

Citation

BibTeX

@article{Fu_2025,
  title={{Exploring the photogalvanic effect based on three BeP2 monolayers: Towards high-performance optoelectronic devices}},
  ISSN={0009-2614},
  DOI={10.1016/j.cplett.2025.142076},
  journal={Chemical Physics Letters},
  publisher={Elsevier BV},
  author={Fu, Xi and Lin, Jian and Liang, Guangyao and Liao, Wenhu and Li, Liming},
  year={2025},
  pages={142076}
}

Download the bib file

References

  • Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon Films. Science vol. 306 666–669 (2004) – 10.1126/science.1102896
  • Geim, A. K. Graphene: Status and Prospects. Science vol. 324 1530–1534 (2009) – 10.1126/science.1158877
  • Cooper, Int. Scholar. Res. Notices (2012)
  • Li, X., Yu, J., Wageh, S., Al‐Ghamdi, A. A. & Xie, J. Graphene in Photocatalysis: A Review. Small vol. 12 6640–6696 (2016) – 10.1002/smll.201600382
  • Wu, J., Lin, H., Moss, D. J., Loh, K. P. & Jia, B. Graphene oxide for photonics, electronics and optoelectronics. Nature Reviews Chemistry vol. 7 162–183 (2023) – 10.1038/s41570-022-00458-7
  • García de Abajo, F. J. Graphene Plasmonics: Challenges and Opportunities. ACS Photonics vol. 1 135–152 (2014) – 10.1021/ph400147y
  • Wang, G., Pandey, R. & Karna, S. P. Carbon phosphide monolayers with superior carrier mobility. Nanoscale vol. 8 8819–8825 (2016) – 10.1039/c6nr00498a
  • Wang, H., Li, X., Sun, J., Liu, Z. & Yang, J. B monolayer with multiferroicity and negative Poisson’s ratio: a prediction by global optimization method. 2D Materials vol. 4 045020 (2017) – 10.1088/2053-1583/aa8abd
  • Hu, Y., Wang, J. & Lin, H. Metallic two-dimensional P2C3: A promising flexible anode for high-performance potassium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects vol. 619 126536 (2021) – 10.1016/j.colsurfa.2021.126536
  • Huang, S., Xie, Y., Zhong, C. & Chen, Y. Double Kagome Bands in a Two-Dimensional Phosphorus Carbide P2C3. The Journal of Physical Chemistry Letters vol. 9 2751–2756 (2018) – 10.1021/acs.jpclett.8b00497
  • Li, X., Zhang, S., Zhang, C. & Wang, Q. Stabilizing benzene-like planar N6rings to form a single atomic honeycomb BeN3sheet with high carrier mobility. Nanoscale vol. 10 949–957 (2018) – 10.1039/c7nr07845e
  • Bafekry, Appl. Phys. Lett. (2021)
  • Bykov, M. et al. High-Pressure Synthesis of Dirac Materials: Layered van der Waals BondedBeN4</mml:math Polymorph. Physical Review Letters vol. 126 (2021) -- [10.1103/physrevlett.126.175501](https://doi.org/10.1103/physrevlett.126.175501)
  • Li, Y., Liao, Y. & Chen, Z. Be2C Monolayer with Quasi‐Planar Hexacoordinate Carbons: A Global Minimum Structure. Angewandte Chemie International Edition vol. 53 7248–7252 (2014) – 10.1002/anie.201403833
  • Naseri, M., Jalilian, J., Parandin, F. & Salehi, K. A new stable polycrystalline Be2C monolayer: A direct semiconductor with hexa-coordinate carbons. Physics Letters A vol. 382 2144–2148 (2018) – 10.1016/j.physleta.2018.05.030
  • Yim, W. M., Dismukes, J. P., Stofko, E. J. & Paff, R. J. Synthesis and some properties of BeTe, BeSe and BeS. Journal of Physics and Chemistry of Solids vol. 33 501–505 (1972) – 10.1016/0022-3697(72)90032-7
  • Meng, J. Phys. Condens. Matter (2019)
  • Li, Phys. Rev. B (2018)
  • Jiang, X., Zhang, G., Yi, W., Yang, T. & Liu, X. Penta-BeP2 Monolayer: A Superior Sensor for Detecting Toxic Gases in the Air with Excellent Sensitivity, Selectivity, and Reversibility. ACS Applied Materials & Interfaces vol. 14 35229–35236 (2022) – 10.1021/acsami.2c07482
  • Li, H. et al. A novel two-dimensional beryllium diphosphide (BeP2) with superconductivity: the first-principles exploration. Physical Chemistry Chemical Physics vol. 23 12834–12841 (2021) – 10.1039/d0cp05230b
  • Abbood, M. A. et al. The feasibility of BeP2 monolayer as an anode material for Mg-ion batteries: A density functional theory study. Computational and Theoretical Chemistry vol. 1227 114248 (2023) – 10.1016/j.comptc.2023.114248
  • Hosur, P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Physical Review B vol. 83 (2011) – 10.1103/physrevb.83.035309
  • Zhukovsky, Phys. Rev. X (2014)
  • Xie, Nanotechnology (2015)
  • Lin, J. Electron. Mater. (2024)
  • Belinicher, V. I. & Sturman, B. I. The photogalvanic effect in media lacking a center of symmetry. Soviet Physics Uspekhi vol. 23 199–223 (1980) – 10.1070/pu1980v023n03abeh004703
  • Sun, X. et al. Effect of vacancies on photogalvanic effect in two-dimensional WSe2 photodetector. Applied Surface Science vol. 610 155401 (2023) – 10.1016/j.apsusc.2022.155401
  • Ma, J. et al. Unveiling Weyl-related optical responses in semiconducting tellurium by mid-infrared circular photogalvanic effect. Nature Communications vol. 13 (2022) – 10.1038/s41467-022-33190-3
  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B vol. 59 1758–1775 (1999) – 10.1103/physrevb.59.1758
  • Blöchl, Handb. Mater. Model.: Methods (2005)
  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Physical Review Letters vol. 77 3865–3868 (1996) – 10.1103/physrevlett.77.3865
  • Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Physical Review B vol. 13 5188–5192 (1976) – 10.1103/physrevb.13.5188
  • Taylor, Phys. Rev. B (2001)
  • Chen, Phys. Rev. B—Condens. Matter Mater. Phys. (2012)
  • Fu, Mater. Today Commun. (2023)
  • Henrickson, L. E. Nonequilibrium photocurrent modeling in resonant tunneling photodetectors. Journal of Applied Physics vol. 91 6273–6281 (2002) – 10.1063/1.1473677
  • Liu, Opt. Laser Technol. (2023)
  • Luo, Y., Hu, Y. & Xie, Y. Highly polarization-sensitive, visible-blind and self-powered ultraviolet photodetection based on two-dimensional wide bandgap semiconductors: a theoretical prediction. Journal of Materials Chemistry A vol. 7 27503–27513 (2019) – 10.1039/c9ta10473a
  • Qian, Front. Phys. (2022)
  • Fu, X. et al. Linear and elliptical photogalvanic effects in two-dimensional penta-BP5 photodetector. Applied Physics A vol. 130 (2024) – 10.1007/s00339-024-07676-4
  • Fu, X. et al. Photogalvanic effect in two-dimensional BGe photodetector by vacancy- and substitution-doping. Physica B: Condensed Matter vol. 686 416075 (2024) – 10.1016/j.physb.2024.416075
  • Li, Mater. Today Commun. (2022)