Authors

A. Parra-Rodriguez, I. L. Egusquiza

Abstract

Following a consistent geometrical description previously introduced [], we present an exact method for obtaining canonically quantizable Hamiltonian descriptions of nonlinear, nonreciprocal quasilumped electrical networks. We identify and classify singularities arising in the quest for Hamiltonian descriptions of general quasilumped element networks via the Faddeev-Jackiw technique. We offer systematic solutions to cases previously considered singular—a major challenge in the context of canonical circuit quantization. The solution relies on the correct identification of the reduced classical circuit-state manifold, i.e., a mix of flux and charge fields and functions. Starting from the geometrical description of the transmission line, we provide a complete program including lines coupled to one-port lumped-element networks, as well as multiple lines connected to multiport nonreciprocal lumped-element networks, with intrinsic ultraviolet cutoff. On the way, we naturally extend the canonical quantization of transmission lines coupled through frequency-dependent, nonreciprocal linear systems, such as practical circulators. Additionally, we demonstrate how our method seamlessly facilitates the characterization of general nonreciprocal, dissipative linear environments. This is achieved by extending the Caldeira-Leggett formalism, using continuous limits of series of immittance matrices. We provide a tool in the analysis and design of electrical circuits and of special interest in the context of canonical quantization of superconducting networks. For instance, this work provides a solid ground for a precise nondivergent input-output theory in the presence of nonreciprocal devices, e.g., within (chiral) waveguide QED platforms. Published by the American Physical Society 2025

Citation

  • Journal: Physical Review X
  • Year: 2025
  • Volume: 15
  • Issue: 1
  • Pages:
  • Publisher: American Physical Society (APS)
  • DOI: 10.1103/physrevx.15.011072

BibTeX

@article{Parra_Rodriguez_2025,
  title={{Exact Quantization of Nonreciprocal Quasilumped Electrical Networks}},
  volume={15},
  ISSN={2160-3308},
  DOI={10.1103/physrevx.15.011072},
  number={1},
  journal={Physical Review X},
  publisher={American Physical Society (APS)},
  author={Parra-Rodriguez, A. and Egusquiza, I. L.},
  year={2025}
}

Download the bib file

References

  • J. D. Jackson, Classical Electrodynamics (1999)
  • R. Feynman, The Feynman Lectures on Physics, Vol. II: Mainly Electromagnetism and Matter (2010)
  • Caldeira, A. O. & Leggett, A. J. Influence of Dissipation on Quantum Tunneling in Macroscopic Systems. Phys. Rev. Lett. 46, 211–214 (1981) – 10.1103/physrevlett.46.211
  • Caldeira, A. O. & Leggett, A. J. Quantum tunnelling in a dissipative system. Annals of Physics 149, 374–456 (1983) – 10.1016/0003-4916(83)90202-6
  • Yurke, B. & Denker, J. S. Quantum network theory. Phys. Rev. A 29, 1419–1437 (1984) – 10.1103/physreva.29.1419
  • Devoret, M. H. & Schoelkopf, R. J. Superconducting Circuits for Quantum Information: An Outlook. Science 339, 1169–1174 (2013) – 10.1126/science.1231930
  • Blais, A., Grimsmo, A. L., Girvin, S. M. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, (2021) – 10.1103/revmodphys.93.025005
  • Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, (2004) – 10.1103/physreva.69.062320
  • Parra-Rodriguez, A. & Egusquiza, I. L. Geometrical description and Faddeev-Jackiw quantization of electrical networks. Quantum 8, 1466 (2024) – 10.22331/q-2024-09-09-1466
  • B. D. H. Tellegen, Philips Res. Rep. (1948)
  • D. M. Pozar, Microwave Engineering (2009)
  • Caloz, C. et al. Electromagnetic Nonreciprocity. Phys. Rev. Applied 10, (2018) – 10.1103/physrevapplied.10.047001
  • V. Belevitch, Elect. Commun. (1950)
  • Kamal, A., Clarke, J. & Devoret, M. H. Noiseless non-reciprocity in a parametric active device. Nature Phys 7, 311–315 (2011) – 10.1038/nphys1893
  • Viola, G. & DiVincenzo, D. P. Hall Effect Gyrators and Circulators. Phys. Rev. X 4, (2014) – 10.1103/physrevx.4.021019
  • Kerckhoff, J., Lalumière, K., Chapman, B. J., Blais, A. & Lehnert, K. W. On-Chip Superconducting Microwave Circulator from Synthetic Rotation. Phys. Rev. Applied 4, (2015) – 10.1103/physrevapplied.4.034002
  • Sliwa, K. M. et al. Reconfigurable Josephson Circulator/Directional Amplifier. Phys. Rev. X 5, (2015) – 10.1103/physrevx.5.041020
  • Chapman, B. J. et al. Widely Tunable On-Chip Microwave Circulator for Superconducting Quantum Circuits. Phys. Rev. X 7, (2017) – 10.1103/physrevx.7.041043
  • Barzanjeh, S. et al. Mechanical on-chip microwave circulator. Nat Commun 8, (2017) – 10.1038/s41467-017-01304-x
  • Rosenthal, E. I., Chapman, B. J., Higginbotham, A. P., Kerckhoff, J. & Lehnert, K. W. Breaking Lorentz Reciprocity with Frequency Conversion and Delay. Phys. Rev. Lett. 119, (2017) – 10.1103/physrevlett.119.147703
  • Josephson, B. D. Possible new effects in superconductive tunnelling. Physics Letters 1, 251–253 (1962) – 10.1016/0031-9163(62)91369-0
  • Mooij, J. E. & Nazarov, Yu. V. Superconducting nanowires as quantum phase-slip junctions. Nature Phys 2, 169–172 (2006) – 10.1038/nphys234
  • Parra-Rodriguez, A., Rico, E., Solano, E. & Egusquiza, I. L. Quantum networks in divergence-free circuit QED. Quantum Sci. Technol. 3, 024012 (2018) – 10.1088/2058-9565/aab1ba
  • Paladino, E., Taddei, F., Giaquinta, G. & Falci, G. Josephson nanocircuit in the presence of linear quantum noise. Physica E: Low-dimensional Systems and Nanostructures 18, 39–40 (2003) – 10.1016/s1386-9477(02)00948-7
  • Ao, Z. et al. Extremely large Lamb shift in a deep-strongly coupled circuit QED system with a multimode resonator. Sci Rep 13, (2023) – 10.1038/s41598-023-36547-w
  • Parra-Rodriguez, A. & Egusquiza, I. L. Canonical quantisation of telegrapher's equations coupled by ideal nonreciprocal elements. Quantum 6, 681 (2022) – 10.22331/q-2022-04-04-681
  • Egusquiza, I. L. & Parra-Rodriguez, A. Algebraic canonical quantization of lumped superconducting networks. Phys. Rev. B 106, (2022) – 10.1103/physrevb.106.024510
  • M. H. Devoret, Proceedings of the Les Houches Summer School, Session LXIII (1995)
  • Vool, U. & Devoret, M. Introduction to quantum electromagnetic circuits. Circuit Theory & Apps 45, 897–934 (2017) – 10.1002/cta.2359
  • Parra-Rodriguez, A., Egusquiza, I. L., DiVincenzo, D. P. & Solano, E. Canonical circuit quantization with linear nonreciprocal devices. Phys. Rev. B 99, (2019) – 10.1103/physrevb.99.014514
  • Parra-Rodriguez, A. & Egusquiza, I. L. Quantum fluctuations in electrical multiport linear systems. Phys. Rev. B 106, (2022) – 10.1103/physrevb.106.054504
  • E. A. Guillemin, Introductory Circuit Theory (1953)
  • Devoret, M. H. Does Brian Josephson’s Gauge-Invariant Phase Difference Live on a Line or a Circle? J Supercond Nov Magn 34, 1633–1642 (2021) – 10.1007/s10948-020-05784-9
  • Astafiev, O. V. et al. Coherent quantum phase slip. Nature 484, 355–358 (2012) – 10.1038/nature10930
  • Foster, R. M. A Reactance Theorem. Bell System Technical Journal 3, 259–267 (1924) – 10.1002/j.1538-7305.1924.tb01358.x
  • W. Cauer, Doktorarbeit: Die Verwirklichung der Wechselstrom- widerstände vorgeschriebener Frequenzabhängigkeit (1926)
  • R. W. Newcomb, Linear Multiport Synthesis (1966)
  • Solgun, F. & DiVincenzo, D. P. Multiport impedance quantization. Annals of Physics 361, 605–669 (2015) – 10.1016/j.aop.2015.07.005
  • Nigg, S. E. et al. Black-Box Superconducting Circuit Quantization. Phys. Rev. Lett. 108, (2012) – 10.1103/physrevlett.108.240502
  • Solgun, F., Abraham, D. W. & DiVincenzo, D. P. Blackbox quantization of superconducting circuits using exact impedance synthesis. Phys. Rev. B 90, (2014) – 10.1103/physrevb.90.134504
  • H. Weyl, Rev. Mate. Hispano-Americana (1923)
  • Rymarz, M. & DiVincenzo, D. P. Consistent Quantization of Nearly Singular Superconducting Circuits. Phys. Rev. X 13, (2023) – 10.1103/physrevx.13.021017
  • Osborne, A. et al. Symplectic Geometry and Circuit Quantization. PRX Quantum 5, (2024) – 10.1103/prxquantum.5.020309
  • Faddeev, L. D. The Feynman integral for singular Lagrangians. Theor Math Phys 1, 1–13 (1969) – 10.1007/bf01028566
  • Faddeev, L. & Jackiw, R. Hamiltonian reduction of unconstrained and constrained systems. Phys. Rev. Lett. 60, 1692–1694 (1988) – 10.1103/physrevlett.60.1692
  • Toms, D. J. Faddeev-Jackiw quantization and the path integral. Phys. Rev. D 92, (2015) – 10.1103/physrevd.92.105026
  • Büttiker, M. Zero-current persistent potential drop across small-capacitance Josephson junctions. Phys. Rev. B 36, 3548–3555 (1987) – 10.1103/physrevb.36.3548
  • Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, (2007) – 10.1103/physreva.76.042319
  • Rymarz, M., Bosco, S., Ciani, A. & DiVincenzo, D. P. Hardware-Encoding Grid States in a Nonreciprocal Superconducting Circuit. Phys. Rev. X 11, (2021) – 10.1103/physrevx.11.011032
  • Egusquiza, I. L., Iñiguez, A., Rico, E. & Villarino, A. Role of anomalous symmetry in0π</mml:math qubits. Phys. Rev. B 105, (2022) -- [10.1103/physrevb.105.l201104](https://doi.org/10.1103/physrevb.105.l201104)
  • Bouchiat, V., Vion, D., Joyez, P., Esteve, D. & Devoret, M. H. Quantum Coherence with a Single Cooper Pair. Physica Scripta T76, 165 (1998) – 10.1238/physica.topical.076a00165
  • Minev, Z. K. et al. Energy-participation quantization of Josephson circuits. npj Quantum Inf 7, (2021) – 10.1038/s41534-021-00461-8
  • Chua, L. Device modeling via nonlinear circuit elements. IEEE Trans. Circuits Syst. 27, 1014–1044 (1980) – 10.1109/tcs.1980.1084742
  • Parra-Rodriguez, A. & Egusquiza, I. L. Geometrical description and Faddeev-Jackiw quantization of electrical networks. Quantum 8, 1466 (2024) – 10.22331/q-2024-09-09-1466
  • O. Heaviside, Electromagnetic Theory. Vol. 1 (1971)
  • Veselago, V. G. THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF $psilon$ AND μ. Sov. Phys. Usp. 10, 509–514 (1968) – 10.1070/pu1968v010n04abeh003699
  • Egger, D. J. & Wilhelm, F. K. Multimode Circuit Quantum Electrodynamics with Hybrid Metamaterial Transmission Lines. Phys. Rev. Lett. 111, (2013) – 10.1103/physrevlett.111.163601
  • Indrajeet, S. et al. Coupling a Superconducting Qubit to a Left-Handed Metamaterial Resonator. Phys. Rev. Applied 14, (2020) – 10.1103/physrevapplied.14.064033
  • Liberal, I. & Ziolkowski, R. W. Nonperturbative decay dynamics in metamaterial waveguides. Applied Physics Letters 118, (2021) – 10.1063/5.0044103
  • Solgun, F., DiVincenzo, D. P. & Gambetta, J. M. Simple Impedance Response Formulas for the Dispersive Interaction Rates in the Effective Hamiltonians of Low Anharmonicity Superconducting Qubits. IEEE Trans. Microwave Theory Techn. 67, 928–948 (2019) – 10.1109/tmtt.2019.2893639
  • Labarca, L., Benhayoune-Khadraoui, O., Blais, A. & Parra-Rodriguez, A. Toolbox for nonreciprocal dispersive models in circuit quantum electrodynamics. Phys. Rev. Applied 22, (2024) – 10.1103/physrevapplied.22.034038
  • Chua, L. Dynamic nonlinear networks: State-of-the-art. IEEE Trans. Circuits Syst. 27, 1059–1087 (1980) – 10.1109/tcs.1980.1084745
  • Roska, T. The limits of modeling of nonlinear circuits. IEEE Trans. Circuits Syst. 28, 212–216 (1981) – 10.1109/tcs.1981.1084974
  • Miano, A. et al. Hamiltonian Extrema of an Arbitrary Flux-Biased Josephson Circuit. PRX Quantum 4, (2023) – 10.1103/prxquantum.4.030324
  • Walter, J. Regular eigenvalue problems with eigenvalue parameter in the boundary condition. Math Z 133, 301–312 (1973) – 10.1007/bf01177870
  • Fulton, C. T. Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 77, 293–308 (1977) – 10.1017/s030821050002521x
  • Forn-Díaz, P. et al. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nature Phys 13, 39–43 (2016) – 10.1038/nphys3905
  • Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat Rev Phys 1, 19–40 (2019) – 10.1038/s42254-018-0006-2
  • Feynman, R. P. & Vernon, F. L., Jr. The theory of a general quantum system interacting with a linear dissipative system. Annals of Physics 24, 118–173 (1963) – 10.1016/0003-4916(63)90068-x
  • Cattaneo, M. & Paraoanu, G. S. Engineering Dissipation with Resistive Elements in Circuit Quantum Electrodynamics. Adv Quantum Tech 4, (2021) – 10.1002/qute.202100054
  • Ashida, Y., Yokota, T., İmamoğlu, A. & Demler, E. Nonperturbative waveguide quantum electrodynamics. Phys. Rev. Research 4, (2022) – 10.1103/physrevresearch.4.023194
  • Paulisch, V., Kimble, H. J. & González-Tudela, A. Universal quantum computation in waveguide QED using decoherence free subspaces. New J. Phys. 18, 043041 (2016) – 10.1088/1367-2630/18/4/043041
  • Mirhosseini, M. et al. Cavity quantum electrodynamics with atom-like mirrors. Nature 569, 692–697 (2019) – 10.1038/s41586-019-1196-1
  • Kannan, B. et al. Waveguide quantum electrodynamics with superconducting artificial giant atoms. Nature 583, 775–779 (2020) – 10.1038/s41586-020-2529-9
  • Sheremet, A. S., Petrov, M. I., Iorsh, I. V., Poshakinskiy, A. V. & Poddubny, A. N. Waveguide quantum electrodynamics: Collective radiance and photon-photon correlations. Rev. Mod. Phys. 95, (2023) – 10.1103/revmodphys.95.015002
  • Pechenezhskiy, I. V., Mencia, R. A., Nguyen, L. B., Lin, Y.-H. & Manucharyan, V. E. The superconducting quasicharge qubit. Nature 585, 368–371 (2020) – 10.1038/s41586-020-2687-9
  • Crescini, N. et al. Evidence of dual Shapiro steps in a Josephson junction array. Nat. Phys. 19, 851–856 (2023) – 10.1038/s41567-023-01961-4
  • Ardati, W. et al. Using Bifluxon Tunneling to Protect the Fluxonium Qubit. Phys. Rev. X 14, (2024) – 10.1103/physrevx.14.041014
  • Kuzmin, R. et al. Observation of the Schmid–Bulgadaev dissipative quantum phase transition. Nat. Phys. 21, 132–136 (2024) – 10.1038/s41567-024-02695-7
  • H. Flanders, Differential Forms with Applications to the Physical Sciences (1963)
  • A. Galindo, Quantum Mechanics I (2012)