Enhancement of squeezing and entanglement in a three-level laser with a parametric amplifier coupled to a two-mode thermal reservoir
Authors
Abstract
This study investigates the quantum properties of cavity light emitted from a coherently driven three-level, non-degenerate laser system integrated with a parametric amplifier and coupled to a two-mode thermal reservoir in an open cavity. The analysis, based on the normal ordering of noise operators associated with the thermal reservoir, indicates that the average photon number is affected by the presence of initially seeded thermal light, with higher thermal light levels leading to a reduced mean photon number. The coupling parameter ( Ω ) and the pump mode amplitude ( ɛ ) play a significant role in determining the mean photon number, with higher values of these parameters resulting in an increase in the mean photon number. Furthermore, a comprehensive analysis of the quadrature squeezing behavior in two-mode cavity light reveals a maximum squeezing of 64.4% at ɛ = 0.03. The coupling parameter Ω and the spontaneous emission rate ( γ ) were found to be crucial in determining the degree of squeezing, with higher spontaneous emission rates leading to reduced squeezing. The presence of initially seeded thermal light significantly affected squeezing, with higher thermal light levels resulting in diminished squeezing. However, manipulating ɛ provides a powerful means to significantly enhance compression. The behavior of photon entanglement showed a notable improvement with increasing ɛ . Compared to existing systems, the interplay of ɛ , 〈 n t h 〉 , and γ enabled unprecedented control over entanglement. This could make the system highly advantageous for quantum technologies. Compared to existing systems, the interplay of ɛ , 〈 n t h 〉 , and γ could position this system as a promising candidate for advancing quantum technologies.
Keywords
Photon statistics; Quadrature squeezing; Parametric amplifier; Photon entanglement; Second-order correlations
Citation
- Journal: Chinese Journal of Physics
- Year: 2025
- Volume: 95
- Issue:
- Pages: 82–102
- Publisher: Elsevier BV
- DOI: 10.1016/j.cjph.2025.02.032
BibTeX
@article{Adem_2025,
title={{Enhancement of squeezing and entanglement in a three-level laser with a parametric amplifier coupled to a two-mode thermal reservoir}},
volume={95},
ISSN={0577-9073},
DOI={10.1016/j.cjph.2025.02.032},
journal={Chinese Journal of Physics},
publisher={Elsevier BV},
author={Adem, Aliyyi},
year={2025},
pages={82--102}
}
References
- Gardiner, C. W. Inhibition of Atomic Phase Decays by Squeezed Light: A Direct Effect of Squeezing. Physical Review Letters vol. 56 1917–1920 (1986) – 10.1103/physrevlett.56.1917
- Qamar, S., Qamar, S. & Suhail Zubairy, M. Effect of phase fluctuations on entanglement generation in a correlated emission laser with injected coherence. Optics Communications vol. 283 781–785 (2010) – 10.1016/j.optcom.2009.10.045
- Alebachew, E. Enhanced squeezing and entanglement in a non-degenerate three-level cascade laser with injected squeezed light. Optics Communications vol. 280 133–141 (2007) – 10.1016/j.optcom.2007.08.017
- Tesfa, S. Effect of dephasing on quantum features of the cavity radiation of an externally pumped correlated emission laser. Physical Review A vol. 79 (2009) – 10.1103/physreva.79.063815
- Meher, N. & Sivakumar, S. A review on quantum information processing in cavities. The European Physical Journal Plus vol. 137 (2022) – 10.1140/epjp/s13360-022-03172-x
- Walther, H., Varcoe, B. T. H., Englert, B.-G. & Becker, T. Cavity quantum electrodynamics. Reports on Progress in Physics vol. 69 1325–1382 (2006) – 10.1088/0034-4885/69/5/r02
- Covey, J. P., Weinfurter, H. & Bernien, H. Quantum networks with neutral atom processing nodes. npj Quantum Information vol. 9 (2023) – 10.1038/s41534-023-00759-9
- Zhong, H.-S. et al. Quantum computational advantage using photons. Science vol. 370 1460–1463 (2020) – 10.1126/science.abe8770
- Beukers, H. K. C. et al. Remote-Entanglement Protocols for Stationary Qubits with Photonic Interfaces. PRX Quantum vol. 5 (2024) – 10.1103/prxquantum.5.010202
- Abebe, T., Mosisa, E. & Gashu, C. Generation of entanglement from a two-mode cascade laser. Pramana vol. 95 (2021) – 10.1007/s12043-020-02049-x
- Asjad, M., Zippilli, S. & Vitali, D. Mechanical Einstein-Podolsky-Rosen entanglement with a finite-bandwidth squeezed reservoir. Physical Review A vol. 93 (2016) – 10.1103/physreva.93.062307
- Mosisa, E. Enhanced Squeezing and Entanglement in Nondegenerate Three-Level Laser Coupled to Squeezed Vacuum Reservoir. Advances in Mathematical Physics vol. 2021 1–12 (2021) – 10.1155/2021/6625690
- Abebe, T. & Feyisa, C. G. Dynamics of a Nondegenerate Three-Level Laser with Parametric Amplifier and Coupled to a Two-Mode Squeezed Vacuum Reservoir. Brazilian Journal of Physics vol. 50 495–508 (2020) – 10.1007/s13538-020-00779-2
- Abebe, T. et al. The Quantum Analysis of Nonlinear Optical Parametric Processes with Thermal Reservoirs. International Journal of Optics vol. 2020 1–11 (2020) – 10.1155/2020/7198091
- Alebachew, E. & Fesseha, K. A degenerate three-level laser with a parametric amplifier. Optics Communications vol. 265 314–321 (2006) – 10.1016/j.optcom.2006.03.017
- Gashu, C., Mosisa, E. & Abebe, T. Entanglement Quantification of Correlated Photons Generated by Three-Level Laser with Parametric Amplifier and Coupled to a Two-Mode Vacuum Reservoir. Advances in Mathematical Physics vol. 2020 1–14 (2020) – 10.1155/2020/9027480
- Adem, A. Quantum and Statistical Properties of a Non-degenerate Three-Level Laser Pumped by Electron Bombardment and Coupled to a Two-Mode Thermal Reservoir. International Journal of Theoretical Physics vol. 63 (2024) – 10.1007/s10773-024-05848-9
- Abebe, T. The Quantum analysis of Nondegenerate Three-Level Laser with Spontaneous Emission and Noiseless Vacuum Reservoir. Ukrainian Journal of Physics vol. 63 969 (2018) – 10.15407/ujpe63.11.969
- Qamar, Entanglement in a bright light source via Raman-driven coherence. Phys. Rev. A (2009)
- Meng, X. et al. Nonclassicality via the Superpositions of Photon Addition and Subtraction and Quantum Decoherence for Thermal Noise. Annalen der Physik vol. 532 (2020) – 10.1002/andp.202000219
- Kassahun, (2016)
- Pontula, (2024)
- Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Reviews of Modern Physics vol. 90 (2018) – 10.1103/revmodphys.90.035005
- Gashu, C. & Abebe, T. Externally induced entanglement amplification in a coherently pumped emission of laser with parametric amplifier and coupled to squeezed vacuum reservoir. Physica Scripta vol. 95 075105 (2020) – 10.1088/1402-4896/ab923b
- Daniel, B. & Fesseha, K. The propagator formulation of the degenerate parametric oscillator. Optics Communications vol. 151 384–394 (1998) – 10.1016/s0030-4018(98)00039-x
- Abebe, Entanglement quantification using various inseparability criteria for correlated photons. Romanian J. Phys. (2020)
- Anwar, J. & Zubairy, M. S. Quantum-statistical properties of noise in a phase-sensitive linear amplifier. Physical Review A vol. 49 481–484 (1994) – 10.1103/physreva.49.481
- Blockley, C. A. & Walls, D. F. Intensity fluctuations in a frequency down-conversion process with three-level atoms. Physical Review A vol. 43 5049–5056 (1991) – 10.1103/physreva.43.5049
- Abebe, T., Yirgashewa, T. & Belay, A. Enhancing Steady-State Entanglement Generated by a Nondegenerate Three-Level Laser with Thermal Reservoir. Advances in Mathematical Physics vol. 2021 1–11 (2021) – 10.1155/2021/5550206
- Alemu, B., Gashu, Ch., Mosisa, E. & Abebe, T. Dynamics of the Cavity Radiation of a Correlated Emis-sion Laser Coupled to a Two-Mode Thermal Reservoir. Ukrainian Journal of Physics vol. 66 1027 (2021) – 10.15407/ujpe66.12.1027
- Drobný, G., Jex, I. & Bužek, V. Mode entanglement in nondegenerate down-conversion with quantized pump. Physical Review A vol. 48 569–579 (1993) – 10.1103/physreva.48.569
- Meher, N. & Jha, A. K. Dependence of the photon statistics of down-converted field-modes on the photon statistics of the pump field-mode. Journal of the Optical Society of America B vol. 37 2248 (2020) – 10.1364/josab.396618
- McNeil, K. J. & Gardiner, C. W. Quantum statistics of parametric oscillation. Physical Review A vol. 28 1560–1566 (1983) – 10.1103/physreva.28.1560
- Adem, Enhancing entanglement and squeezing in a three-level laser with open cavity coupled to a two-mode squeezed vacuum reservoir. J. Opt. (2024)
- Alemu, M. Induced entanglement by three-level laser in an open cavity coupled to thermal reservoir. Chinese Journal of Physics vol. 85 692–707 (2023) – 10.1016/j.cjph.2023.07.022
- Walls, D. F. & Milburn, G. J. Atomic Optics. Quantum Optics 315–340 (1994) doi:10.1007/978-3-642-79504-6_17 – 10.1007/978-3-642-79504-6_17
- Meng, X. et al. Continuous‐Variable Entanglement and Wigner‐Function Negativity via Adding or Subtracting Photons. Annalen der Physik vol. 532 (2020) – 10.1002/andp.201900585