Energy shaping controller design of three‐phase quasi‐Z‐source inverter for grid‐tie
Authors
Dazhong Ma, Zhiyang Cai, Rui Wang, Qiuye Sun, Peng Wang
Abstract
Although the control strategy regarding quasi‐Z‐source inverter (qZSI) has been widely studied, the dynamic response and steady‐state accuracy of the system with a non‐linear section should be further improved. Based on this, this study proposes an energy shaping control (ESC) method based on the port‐controlled Hamiltonian (PCH) model for qZSIs. Firstly, based on the average state‐space model, the PCH model of the qZSI system is first built, which is an indispensable preprocessing for the following controller design. Based on the proposed model, the ESC method combining the interconnect matrix with damping configuration is proposed to improve the dynamic response and steady‐state accuracy, which is verified through comparing with several existing linear and non‐linear control strategies in detail. Finally, simulation and experimental results verify the effectiveness of the proposed method.
Citation
- Journal: IET Power Electronics
- Year: 2020
- Volume: 13
- Issue: 16
- Pages: 3601–3612
- Publisher: Institution of Engineering and Technology (IET)
- DOI: 10.1049/iet-pel.2020.0264
BibTeX
@article{Ma_2020,
title={{Energy shaping controller design of three‐phase quasi‐Z‐source inverter for grid‐tie}},
volume={13},
ISSN={1755-4543},
DOI={10.1049/iet-pel.2020.0264},
number={16},
journal={IET Power Electronics},
publisher={Institution of Engineering and Technology (IET)},
author={Ma, Dazhong and Cai, Zhiyang and Wang, Rui and Sun, Qiuye and Wang, Peng},
year={2020},
pages={3601--3612}
}
References
- Ma, D., Sun, Q., Xie, X. & Li, X. Event triggering power sharing control for AC/DC microgrids based on P -F droop curve method. Journal of the Franklin Institute 356, 1225–1246 (2019) – 10.1016/j.jfranklin.2018.10.025
- Han, R., Wang, H., Jin, Z., Meng, L. & Guerrero, J. M. Compromised Controller Design for Current Sharing and Voltage Regulation in DC Microgrid. IEEE Trans. Power Electron. 34, 8045–8061 (2019) – 10.1109/tpel.2018.2878084
- Wang, R., Sun, Q., Ma, D. & Liu, Z. The Small-Signal Stability Analysis of the Droop-Controlled Converter in Electromagnetic Timescale. IEEE Trans. Sustain. Energy 10, 1459–1469 (2019) – 10.1109/tste.2019.2894633
- Liu, Y., Ge, B., Abu-Rub, H. & Peng, F. Z. Control System Design of Battery-Assisted Quasi-Z-Source Inverter for Grid-Tie Photovoltaic Power Generation. IEEE Trans. Sustain. Energy 4, 994–1001 (2013) – 10.1109/tste.2013.2263202
- Sun, Q., Han, R., Zhang, H., Zhou, J. & Guerrero, J. M. A Multiagent-Based Consensus Algorithm for Distributed Coordinated Control of Distributed Generators in the Energy Internet. IEEE Trans. Smart Grid 6, 3006–3019 (2015) – 10.1109/tsg.2015.2412779
- Dong, S., Zhang, Q. & Cheng, S. Analysis of Critical Inductance and Capacitor Voltage Ripple for a Bidirectional <italic>Z</italic> -Source Inverter. IEEE Trans. Power Electron. 30, 4009–4015 (2015) – 10.1109/tpel.2014.2350991
- Liu, Y., Ge, B., Abu-Rub, H. & Peng, F. Z. Overview of Space Vector Modulations for Three-Phase Z-Source/Quasi-Z-Source Inverters. IEEE Trans. Power Electron. 29, 2098–2108 (2014) – 10.1109/tpel.2013.2269539
- Fang Zheng Peng. Z-source inverter. IEEE Trans. on Ind. Applicat. 39, 504–510 (2003) – 10.1109/tia.2003.808920
- Siwakoti, Y. P., Peng, F. Z., Blaabjerg, F., Loh, P. C. & Town, G. E. Impedance-Source Networks for Electric Power Conversion Part I: A Topological Review. IEEE Trans. Power Electron. 30, 699–716 (2015) – 10.1109/tpel.2014.2313746
- Loh, P. C. & Blaabjerg, F. Magnetically Coupled Impedance-Source Inverters. IEEE Trans. on Ind. Applicat. 49, 2177–2187 (2013) – 10.1109/tia.2013.2262032
- Gao, F., Loh, P. C., Blaabjerg, F., Teodorescu, R. & Vilathgamuwa, D. M. Five-level Z-source diode-clamped inverter. IET Power Electron. 3, 500–510 (2010) – 10.1049/iet-pel.2009.0015
- Shen, M., Joseph, A., Wang, J., Peng, F. Z. & Adams, D. J. Comparison of Traditional Inverters and $Z$-Source Inverter for Fuel Cell Vehicles. IEEE Trans. Power Electron. 22, 1453–1463 (2007) – 10.1109/tpel.2007.900505
- Battiston, A. et al. Comparison Criteria for Electric Traction System Using Z-Source/Quasi Z-Source Inverter and Conventional Architectures. IEEE J. Emerg. Sel. Topics Power Electron. 2, 467–476 (2014) – 10.1109/jestpe.2014.2298755
- Babaei, E., Shokati Asl, E., Hasan Babayi, M. & Laali, S. Developed embedded switched‐Z‐source inverter. IET Power Electronics 9, 1828–1841 (2016) – 10.1049/iet-pel.2015.0921
- Ge, B. et al. An Energy-Stored Quasi-Z-Source Inverter for Application to Photovoltaic Power System. IEEE Trans. Ind. Electron. 60, 4468–4481 (2013) – 10.1109/tie.2012.2217711
- Shiluveru, K., Singh, A., Ahmad, A. & Singh, R. K. Hybrid Buck–Boost Multioutput Quasi-Z-Source Converter With Dual DC and Single AC Outputs. IEEE Trans. Power Electron. 35, 7246–7260 (2020) – 10.1109/tpel.2019.2960268
- Zhang, J. Unified control of Z‐source grid‐connected photovoltaic system with reactive power compensation and harmonics restraint: design and application. IET Renewable Power Gen 12, 422–429 (2018) – 10.1049/iet-rpg.2016.0478
- Qin, C., Zhang, C., Chen, A., Xing, X. & Zhang, G. A Space Vector Modulation Scheme of the Quasi-Z-Source Three-Level T-Type Inverter for Common-Mode Voltage Reduction. IEEE Trans. Ind. Electron. 65, 8340–8350 (2018) – 10.1109/tie.2018.2798611
- Noroozi, N. & Zolghadri, M. R. Three-Phase Quasi-Z-Source Inverter With Constant Common-Mode Voltage for Photovoltaic Application. IEEE Trans. Ind. Electron. 65, 4790–4798 (2018) – 10.1109/tie.2017.2774722
- Zhang, G. et al. An Impedance Network Boost Converter With a High-Voltage Gain. IEEE Trans. Power Electron. 32, 6661–6665 (2017) – 10.1109/tpel.2017.2673545
- Gajanayake, C. J., Vilathgamuwa, D. M. & Poh Chiang Loh. Development of a Comprehensive Model and a Multiloop Controller for $Z$-Source Inverter DG Systems. IEEE Trans. Ind. Electron. 54, 2352–2359 (2007) – 10.1109/tie.2007.894772
- Siwakoti, Y. P. et al. Impedance-Source Networks for Electric Power Conversion Part II: Review of Control and Modulation Techniques. IEEE Trans. Power Electron. 30, 1887–1906 (2015) – 10.1109/tpel.2014.2329859
- Li, Y., Jiang, S., Cintron-Rivera, J. G. & Peng, F. Z. Modeling and Control of Quasi-Z-Source Inverter for Distributed Generation Applications. IEEE Trans. Ind. Electron. 60, 1532–1541 (2013) – 10.1109/tie.2012.2213551
- Nguyen M., High voltage gain quasi‐switched boost inverters with low input current ripple. IEEE Trans. Ind. Electron. (2019)
- Zakipour, A., Shokri Kojori, S. & Tavakoli Bina, M. Closed‐loop control of the grid‐connected Z‐source inverter using hyper‐plane MIMO sliding mode. IET Power Electronics 10, 2229–2241 (2017) – 10.1049/iet-pel.2017.0076
- Rostami, H. & Khaburi, D. A. Neural networks controlling for both the DC boost and AC output voltage of Z-source inverter. 2010 1st Power Electronic & Drive Systems & Technologies Conference (PEDSTC) 135–140 (2010) doi:10.1109/pedstc.2010.5471841 – 10.1109/pedstc.2010.5471841
- Ding, X., Qian, Z., Yang, S., Cui, B. & Peng, F. A direct DC-link boost voltage PID-like fuzzy control strategy in Z-source inverter. 2008 IEEE Power Electronics Specialists Conference 405–411 (2008) doi:10.1109/pesc.2008.4591963 – 10.1109/pesc.2008.4591963
- Tarisciotti, L. et al. Model Predictive Control for Shunt Active Filters With Fixed Switching Frequency. IEEE Trans. on Ind. Applicat. 53, 296–304 (2017) – 10.1109/tia.2016.2606364
- Dong, K., Shi, T., Xiao, S., Li, X. & Xia, C. Finite set model predictive control method for quasi‐Z source inverter‐permanent magnet synchronous motor drive system. IET Electric Power Appl 13, 302–309 (2019) – 10.1049/iet-epa.2018.5486
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 53, 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Ran, Y., Wang, Y., Wang, W. & Liu, H. Energy-Shaping Control Strategy of the Improved Y-Source Inverter. 2018 21st International Conference on Electrical Machines and Systems (ICEMS) 1082–1087 (2018) doi:10.23919/icems.2018.8549525 – 10.23919/icems.2018.8549525