Authors

Fan Yang, Bo Sheng, Yang Fu

Abstract

This paper deals with the energy management problem of a Proton Exchange Membrane Fuel Cell (PEMFC) with Supercapacitor (SC) hybrid system. An innovative Interconnection and Damping Assignment Passivity-based Controller (IDA-PBC) with multi-equilibrium states is proposed in this paper. The hybrid system is first modeled as a Port-controlled Hamiltonian (PCH) system by considering the PEMFC and the SC as external voltage signals. Moreover, the IDA-PBC is designed using the techniques of energy shaping and damping injection, and the multi-equilibrium states of the hybrid system in different operating modes are analyzed. Simulation studies are carried out in Matlab/Simulink software to validate the proposed control strategy. The results show that the proposed IDA-PBC with multi-equilibrium states optimally balances power flow distribution in the hybrid system and ensures the stability of the hybrid system in different operating modes.

Citation

  • Journal: IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society
  • Year: 2015
  • Volume:
  • Issue:
  • Pages: 000511–000516
  • Publisher: IEEE
  • DOI: 10.1109/iecon.2015.7392151

BibTeX

@inproceedings{Yang_2015,
  title={{Energy management for fuel cell-supercapacitor hybrid system using passivity-based controller with multi-equilibrium states}},
  DOI={10.1109/iecon.2015.7392151},
  booktitle={{IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society}},
  publisher={IEEE},
  author={Yang, Fan and Sheng, Bo and Fu, Yang},
  year={2015},
  pages={000511--000516}
}

Download the bib file

References

  • Ayad, M. Y. et al. Passivity-Based Control applied to DC hybrid power source using fuel cell and supercapacitors. Energy Conversion and Management 51, 1468–1475 (2010) – 10.1016/j.enconman.2010.01.023
  • Hilairet, M. et al. A passivity-based controller for coordination of converters in a fuel cell system. Control Engineering Practice 21, 1097–1109 (2013) – 10.1016/j.conengprac.2013.04.003
  • Correa, J. M., Farret, F. A., Canha, L. N. & Simoes, M. G. An Electrochemical-Based Fuel-Cell Model Suitable for Electrical Engineering Automation Approach. IEEE Trans. Ind. Electron. 51, 1103–1112 (2004) – 10.1109/tie.2004.834972
  • Mann, R. F. et al. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. Journal of Power Sources 86, 173–180 (2000) – 10.1016/s0378-7753(99)00484-x
  • Zubieta, L. & Bonert, R. Characterization of double-layer capacitors for power electronics applications. IEEE Trans. on Ind. Applicat. 36, 199–205 (2000) – 10.1109/28.821816
  • Thounthong, P., Rael, S. & Davat, B. Analysis of Supercapacitor as Second Source Based on Fuel Cell Power Generation. IEEE Trans. Energy Convers. 24, 247–255 (2009) – 10.1109/tec.2008.2003216
  • Thounthong, P. & Rael, S. The benefits of hybridization. EEE Ind. Electron. Mag. 3, 25–37 (2009) – 10.1109/mie.2009.933885
  • Jiabin Wang, Taylor, B., Zhigang Sun & Howe, D. Experimental Characterization of a Supercapacitor-Based Electrical Torque-Boost System for Downsized ICE Vehicles. IEEE Trans. Veh. Technol. 56, 3674–3681 (2007) – 10.1109/tvt.2007.901885
  • Thounthong, P., Chunkag, V., Sethakul, P., Davat, B. & Hinaje, M. Comparative Study of Fuel-Cell Vehicle Hybridization with Battery or Supercapacitor Storage Device. IEEE Trans. Veh. Technol. 58, 3892–3904 (2009) – 10.1109/tvt.2009.2028571
  • Ortuzar, M., Moreno, J. & Dixon, J. Ultracapacitor-Based Auxiliary Energy System for an Electric Vehicle: Implementation and Evaluation. IEEE Trans. Ind. Electron. 54, 2147–2156 (2007) – 10.1109/tie.2007.894713
  • El Fadil, H., Giri, F., Guerrero, J. M. & Tahri, A. Modeling and Nonlinear Control of a Fuel Cell/Supercapacitor Hybrid Energy Storage System for Electric Vehicles. IEEE Trans. Veh. Technol. 63, 3011–3018 (2014) – 10.1109/tvt.2014.2323181
  • Azib, T., Bethoux, O., Remy, G. & Marchand, C. Structure and control strategy for a parallel hybrid fuel cell/supercapacitors power source. 2009 IEEE Vehicle Power and Propulsion Conference 1858–1863 (2009) doi:10.1109/vppc.2009.5289678 – 10.1109/vppc.2009.5289678
  • Yang, Y.-P., Liu, J.-J., Wang, T.-J., Kuo, K.-C. & Hsu, P.-E. An Electric Gearshift With Ultracapacitors for the Power Train of an Electric Vehicle With a Directly Driven Wheel Motor. IEEE Trans. Veh. Technol. 56, 2421–2431 (2007) – 10.1109/tvt.2007.899956
  • Thounthong, P., Rael, S. & Davat, B. Control Strategy of Fuel Cell and Supercapacitors Association for a Distributed Generation System. IEEE Trans. Ind. Electron. 54, 3225–3233 (2007) – 10.1109/tie.2007.896477
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002)10.1016/s0005-1098(01)00278-3