Energy dissipating hybrid control for impulsive dynamical systems
Authors
Abstract
A novel class of fixed-order, energy-based hybrid controllers is proposed as a means for achieving enhanced energy dissipation in nonsmooth Euler–Lagrange, hybrid port-controlled Hamiltonian, and lossless impulsive dynamical systems. These dynamic controllers combine a logical switching architecture with hybrid dynamics to guarantee that the system plant energy is strictly decreasing across switchings. The general framework leads to hybrid closed-loop systems described by impulsive differential equations. Special cases of energy-based hybrid controllers involving state-dependent switching are described, and an illustrative numerical example is given to demonstrate the efficacy of the proposed approach.
Keywords
dynamic compensation, hybrid control, hybrid systems, impulsive dynamical systems, lossless systems, nonsmooth euler–lagrange systems
Citation
- Journal: Nonlinear Analysis: Theory, Methods & Applications
- Year: 2008
- Volume: 69
- Issue: 10
- Pages: 3232–3248
- Publisher: Elsevier BV
- DOI: 10.1016/j.na.2005.10.052
BibTeX
@article{Haddad_2008,
title={{Energy dissipating hybrid control for impulsive dynamical systems}},
volume={69},
ISSN={0362-546X},
DOI={10.1016/j.na.2005.10.052},
number={10},
journal={Nonlinear Analysis: Theory, Methods & Applications},
publisher={Elsevier BV},
author={Haddad, Wassim M. and Hui, Qing},
year={2008},
pages={3232--3248}
}References
- Haddad, W. M., Chellaboina, V., Hui, Q. & Nersesov, S. G. Energy- and Entropy-Based Stabilization for Lossless Dynamical Systems via Hybrid Controllers. IEEE Trans. Automat. Contr. 52, 1604–1614 (2007) – 10.1109/tac.2007.904452
- Lakshmikantham, (1989)
- Bainov, (1989)
- Bainov, (1995)
- Samoilenko, (1995)
- Haddad, W. M. et al. Non-linear impulsive dynamical systems. Part I: Stability and dissipativity. International Journal of Control 74, 1631–1658 (2001) – 10.1080/00207170110081705
- Haddad, W. M., Chellaboina, V. & Kablar, N. A. Non-linear impulsive dynamical systems. Part II: Stability of feedback interconnections and optimality. International Journal of Control 74, 1659–1677 (2001) – 10.1080/00207170110080959
- Chellaboina, V., Bhat, S. P. & Haddad, W. M. An invariance principle for nonlinear hybrid and impulsive dynamical systems. Nonlinear Analysis: Theory, Methods & Applications 53, 527–550 (2003) – 10.1016/s0362-546x(02)00316-4
- Brogliato, (1999)
- Ortega, (1998)
- Lozano, (2000)
- van der Schaft, (2000)
- van der Schaft, A. J. Stabilization of Hamiltonian systems. Nonlinear Analysis: Theory, Methods & Applications 10, 1021–1035 (1986) – 10.1016/0362-546x(86)90086-6
- Ortega, R. & Spong, M. W. Adaptive motion control of rigid robots: A tutorial. Automatica 25, 877–888 (1989) – 10.1016/0005-1098(89)90054-x
- Nijmeijer, (1990)
- Ortega, On output feedback global stabilization of Euler–Lagrange systems. Int. J. Control (1995)
- Shishkin, S., Ortega, R., Hill, D. & Loria, A. On output feedback stabilization of Euler-Lagrange systems with nondissipative forces. Systems & Control Letters 27, 315–324 (1996) – 10.1016/0167-6911(95)00048-8
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Energy-shaping of port-controlled Hamiltonian systems by interconnection. Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304) vol. 2 1646–1651 – 10.1109/cdc.1999.830260
- Ortega, Stabilization of port-controlled Hamiltonian systems via energy balancing. (1999)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Michel, (2001)
- Yang, (2001)
- Haddad, W. M., Nersesov, S. G. & Chellaboina, V. Energy-based control for hybrid port-controlled Hamiltonian systems. Automatica 39, 1425–1435 (2003) – 10.1016/s0005-1098(03)00113-4