Energy based control of compass gait soft limbed bipeds
Authors
Isuru S. Godage, Yue Wang, Ian D. Walker
Abstract
Soft limb locomotion is a relatively new and challenging research field. However, soft limbs can not yet transition to practical application due to difficulties associated with control methods. Motivated by this research problem, in this paper, we investigate the performance of energy based control of underactuated soft limbed systems. We augment the previously reported energy shaping function for rigid bipeds with a new set of functions for the novel class of underactuated compass gait soft bipeds. We evaluate the controller performance and identify desired features and characteristics for better speed performance of such a biped. The proposed energy shaping functions are compared through controlled Lagrangian (CL) method for Euler-Lagrangian (EL) models and interconnection and damping assignment passivity-based control (IDA-PBC) methods for port-controlled Hamiltonian (PCH) models. Results for system stability, speed performance, and input torque profiles are compared. The IDA-PBC controllers are observed to produce better input torque and performance over the CL methods.The findings assist in extending and developing novel controllers to implement on soft limbed robots for practical control applications of soft multi-continuum limbed robots.
Citation
- Journal: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
- Year: 2014
- Volume:
- Issue:
- Pages: 4057–4064
- Publisher: IEEE
- DOI: 10.1109/iros.2014.6943133
BibTeX
@inproceedings{Godage_2014,
title={{Energy based control of compass gait soft limbed bipeds}},
DOI={10.1109/iros.2014.6943133},
booktitle={{2014 IEEE/RSJ International Conference on Intelligent Robots and Systems}},
publisher={IEEE},
author={Godage, Isuru S. and Wang, Yue and Walker, Ian D.},
year={2014},
pages={4057--4064}
}
References
- murray, A Mathematical Introduction to Robotic Manipulation (1994)
- Zullo, L. & Hochner, B. A new perspective on the organization of an invertebrate brain. Communicative & Integrative Biology 4, 26–29 (2011) – 10.4161/cib.13804
- Kokotovic, P. V., Krstic, M. & Kanellakopoulos, I. Backstepping to passivity: recursive design of adaptive systems. [1992] Proceedings of the 31st IEEE Conference on Decision and Control 3276–3280 doi:10.1109/cdc.1992.371031 – 10.1109/cdc.1992.371031
- Liu, Y. & Yu, H. A survey of underactuated mechanical systems. IET Control Theory & Appl 7, 921–935 (2013) – 10.1049/iet-cta.2012.0505
- White, W. N., Foss, M. & Xin Guo. A direct Lyapunov approach for a class of underactuated mechanical systems. 2006 American Control Conference 8 pp. (2006) doi:10.1109/acc.2006.1655338 – 10.1109/acc.2006.1655338
- Ichida, K., Watanabe, K., Izumi, K. & Uchida, N. Fuzzy Switching Control of Underactuated Manipulators with Approximated Switching Regions. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems 586–591 (2006) doi:10.1109/iros.2006.282479 – 10.1109/iros.2006.282479
- Zheng, T. et al. Octopus inspired walking robot: Design, control and experimental validation. 2013 IEEE International Conference on Robotics and Automation 816–821 (2013) doi:10.1109/icra.2013.6630667 – 10.1109/icra.2013.6630667
- masato ishikawa, Energy preserving control of a hopping robot based on hybrid port-controlled Hamiltonian modeling. SICE 2003 Annual Conference (IEEE Cat No 03TH8734) SICE-03 (2003)
- holm, Control of Passive Dynamic Robots Using Artificial Potential Energy Fields (2005)
- Holm, J. K. & Spong, M. W. Kinetic energy shaping for gait regulation of underactuated bipeds. 2008 IEEE International Conference on Control Applications 1232–1238 (2008) doi:10.1109/cca.2008.4629638 – 10.1109/cca.2008.4629638
- Godage, I. S., Branson, D. T., Guglielmino, E. & Caldwell, D. G. Pneumatic muscle actuated continuum arms: Modelling and experimental assessment. 2012 IEEE International Conference on Robotics and Automation (2012) doi:10.1109/icra.2012.6224949 – 10.1109/icra.2012.6224949
- Godage, I. S., Nanayakkara, T. & Caldwell, D. G. Locomotion with continuum limbs. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems 293–298 (2012) doi:10.1109/iros.2012.6385810 – 10.1109/iros.2012.6385810
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Nikkhah, M., Ashrafiuon, H. & Fahimi, F. Robust control of underactuated bipeds using sliding modes. Robotica 25, 367–374 (2007) – 10.1017/s0263574706003183
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Automat. Contr. 47, 1218–1233 (2002) – 10.1109/tac.2002.800770
- van der Schaft, A. J. L/sub 2/-gain analysis of nonlinear systems and nonlinear state-feedback H/sub infinity / control. IEEE Trans. Automat. Contr. 37, 770–784 (1992) – 10.1109/9.256331
- Shepherd, R. F. et al. Multigait soft robot. Proc. Natl. Acad. Sci. U.S.A. 108, 20400–20403 (2011) – 10.1073/pnas.1116564108
- Shiriaev, A. S., Freidovich, L. B. & Spong, M. W. A remark on Controlled Lagrangian approach. European Journal of Control 19, 438–444 (2013) – 10.1016/j.ejcon.2013.09.004
- Spong, M. W. Partial feedback linearization of underactuated mechanical systems. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’94) vol. 1 314–321 – 10.1109/iros.1994.407375
- Spong, M. W. & Bullo, F. Controlled symmetries and passive walking. IEEE Trans. Automat. Contr. 50, 1025–1031 (2005) – 10.1109/tac.2005.851449
- Suzumori, K. Elastic materials producing compliant robots. Robotics and Autonomous Systems 18, 135–140 (1996) – 10.1016/0921-8890(95)00078-x
- Trivedi, D., Rahn, C. D., Kier, W. M. & Walker, I. D. Soft Robotics: Biological Inspiration, State of the Art, and Future Research. Applied Bionics and Biomechanics 5, 99–117 (2008) – 10.1155/2008/520417
- Bloch, A. M., Dong Eui Chang, Leonard, N. E. & Marsden, J. E. Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping. IEEE Trans. Automat. Contr. 46, 1556–1571 (2001) – 10.1109/9.956051
- bloch, Controlled Lagrangians and the stabilization of mechanical systems I The first matching theorem” IEEE Tran on Automatic Control (2000)
- godage, Dynamics for biomimetic continuum arms: A modal approach. IEEE Int Conf on Robotics and Biomimetics (2011)
- Blankenstein, G., Ortega, R. & Van Der Schaft, A. J. The matching conditions of controlled Lagrangians and IDA-passivity based control. International Journal of Control 75, 645–665 (2002) – 10.1080/00207170210135939
- Tsagarakis, N. G., Morfey, S., Medrano Cerda, G., Zhibin, L. & Caldwell, D. G. COMpliant huMANoid COMAN: Optimal joint stiffness tuning for modal frequency control. 2013 IEEE International Conference on Robotics and Automation 673–678 (2013) doi:10.1109/icra.2013.6630645 – 10.1109/icra.2013.6630645
- duindam, Port-based control of a compassgait bipedal robot. Proc of IFAC World Congress (2005)
- Chevallereau, C. Time-scaling control for an underactuated biped robot. IEEE Trans. Robot. Automat. 19, 362–368 (2003) – 10.1109/tra.2003.808863
- Walker, I. D. Continuous Backbone “Continuum” Robot Manipulators. ISRN Robotics 2013, 1–19 (2013) – 10.5402/2013/726506
- Chang, D. E., Bloch, A. M., Leonard, N. E., Marsden, J. E. & Woolsey, C. A. The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems. ESAIM: COCV 8, 393–422 (2002) – 10.1051/cocv:2002045
- Walker, I. D., Mattfeld, R., Mutlu, A., Bartow, A. & Giri, N. A novel approach to robotic climbing using continuum appendages in in-situ exploration. 2012 IEEE Aerospace Conference 1–9 (2012) doi:10.1109/aero.2012.6187037 – 10.1109/aero.2012.6187037
- Bullo, F. & Lynch, K. M. Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems. IEEE Trans. Robot. Automat. 17, 402–412 (2001) – 10.1109/70.954753
- Finn, J. K., Tregenza, T. & Norman, M. D. Defensive tool use in a coconut-carrying octopus. Current Biology 19, R1069–R1070 (2009) – 10.1016/j.cub.2009.10.052
- Dunbar, W. B. & Murray, R. M. Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42, 549–558 (2006) – 10.1016/j.automatica.2005.12.008