Authors

M. Becherif, H.S. Ramadan, M.Y. Ayad, D. Hissel, U. Desideri, M. Antonelli

Abstract

Electrochemical capacitors, called supercapacitors (SCs) or ultracapacitors, are devices conveniently used for embedded electrical energy management owing to their huge capacitance, low internal resistance and flexible control through power electronic conversion. This paper proposes a main power supply of hybrid Wind Generator (WG)–SC within the train station for feeding the traction onboard SC through specified limited feeding transit durations. Onboard SCs provide the train with the requested start–up self–energy. The hybrid WG–SCs system is an environmental–friendly source that enables the independency on national grid and guarantees an efficient bidirectional power transfer for energy management with enhanced dynamic performance. Therefore, the dynamic modelling and the experimental analysis of the modern hybrid WG–SCs used for managing the charge/discharge operation of SCs at Unity Power Factor (UPF) mode are presented. For this purpose, the Port–Controlled Hamiltonian (PCH) methodology is deduced and explicitly presented. Simulation results, via MATLAB™, reveal that the proposed PCH control methodology can be successfully implemented to ensure acceptable system dynamic behavior. Numerical results are validated with experimental measurements to investigate the significance of the PCH approach for the energy management operation in eco-tractions.

Keywords

energy storage systems, port-controlled hamiltonian, supercapacitors, traction systems, train feeding, wind energy

Citation

BibTeX

@article{Becherif_2017,
  title={{Efficient start–up energy management via nonlinear control for eco–traction systems}},
  volume={187},
  ISSN={0306-2619},
  DOI={10.1016/j.apenergy.2016.11.007},
  journal={Applied Energy},
  publisher={Elsevier BV},
  author={Becherif, M. and Ramadan, H.S. and Ayad, M.Y. and Hissel, D. and Desideri, U. and Antonelli, M.},
  year={2017},
  pages={899--909}
}

Download the bib file

References

  • González-Gil, A., Palacin, R., Batty, P. & Powell, J. P. A systems approach to reduce urban rail energy consumption. Energy Conversion and Management 80, 509–524 (2014) – 10.1016/j.enconman.2014.01.060
  • IEA, (2012)
  • Hannan, M. A., Azidin, F. A. & Mohamed, A. Hybrid electric vehicles and their challenges: A review. Renewable and Sustainable Energy Reviews 29, 135–150 (2014) – 10.1016/j.rser.2013.08.097
  • Jorgensen, K. Technologies for electric, hybrid and hydrogen vehicles: Electricity from renewable energy sources in transport. Utilities Policy 16, 72–79 (2008) – 10.1016/j.jup.2007.11.005
  • Mahela, O. P. & Shaik, A. G. Comprehensive overview of grid interfaced wind energy generation systems. Renewable and Sustainable Energy Reviews 57, 260–281 (2016) – 10.1016/j.rser.2015.12.048
  • Bhatti, A. R., Salam, Z., Aziz, M. J. B. A., Yee, K. P. & Ashique, R. H. Electric vehicles charging using photovoltaic: Status and technological review. Renewable and Sustainable Energy Reviews 54, 34–47 (2016) – 10.1016/j.rser.2015.09.091
  • Torreglosa, J. P., García-Triviño, P., Fernández-Ramirez, L. M. & Jurado, F. Decentralized energy management strategy based on predictive controllers for a medium voltage direct current photovoltaic electric vehicle charging station. Energy Conversion and Management 108, 1–13 (2016) – 10.1016/j.enconman.2015.10.074
  • Castaings, A., Lhomme, W., Trigui, R. & Bouscayrol, A. Comparison of energy management strategies of a battery/supercapacitors system for electric vehicle under real-time constraints. Applied Energy 163, 190–200 (2016) – 10.1016/j.apenergy.2015.11.020
  • García, P., Torreglosa, J. P., Fernández, L. M. & Jurado, F. Control strategies for high-power electric vehicles powered by hydrogen fuel cell, battery and supercapacitor. Expert Systems with Applications 40, 4791–4804 (2013) – 10.1016/j.eswa.2013.02.028
  • Borowik, L. & Cywiński, A. Modernization of a trolleybus line system in Tychy as an example of eco-efficient initiative towards a sustainable transport system. Journal of Cleaner Production 117, 188–198 (2016) – 10.1016/j.jclepro.2015.11.072
  • Kühne, R. Electric buses – An energy efficient urban transportation means. Energy 35, 4510–4513 (2010) – 10.1016/j.energy.2010.09.055
  • González, A., Goikolea, E., Barrena, J. A. & Mysyk, R. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews 58, 1189–1206 (2016) – 10.1016/j.rser.2015.12.249
  • Capasso, C. & Veneri, O. Laboratory Bench to Test ZEBRA Battery Plus Super-Capacitor Based Propulsion Systems for Urban Electric Transportation. Energy Procedia 75, 1956–1961 (2015) – 10.1016/j.egypro.2015.07.235
  • Sun, L. & Zhang, N. Design, implementation and characterization of a novel bi-directional energy conversion system on DC motor drive using super-capacitors. Applied Energy 153, 101–111 (2015) – 10.1016/j.apenergy.2014.06.084
  • Zhu, W. H. & Tatarchuk, B. J. Characterization of asymmetric ultracapacitors as hybrid pulse power devices for efficient energy storage and power delivery applications. Applied Energy 169, 460–468 (2016) – 10.1016/j.apenergy.2016.02.020
  • Veneri, O., Capasso, C. & Patalano, S. Experimental study on the performance of a ZEBRA battery based propulsion system for urban commercial vehicles. Applied Energy 185, 2005–2018 (2017) – 10.1016/j.apenergy.2016.01.124
  • Kumar, L. & Jain, S. Electric propulsion system for electric vehicular technology: A review. Renewable and Sustainable Energy Reviews 29, 924–940 (2014) – 10.1016/j.rser.2013.09.014
  • González-Gil, A., Palacin, R. & Batty, P. Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy. Energy Conversion and Management 75, 374–388 (2013) – 10.1016/j.enconman.2013.06.039
  • Burke, A. Ultracapacitors: why, how, and where is the technology. Journal of Power Sources 91, 37–50 (2000) – 10.1016/s0378-7753(00)00485-7
  • Singh, M., Khadkikar, V., Chandra, A. & Varma, R. K. Grid Interconnection of Renewable Energy Sources at the Distribution Level With Power-Quality Improvement Features. IEEE Trans. Power Delivery 26, 307–315 (2011) – 10.1109/tpwrd.2010.2081384
  • Bueno, A., Aller, J. M., Restrepo, J. A., Harley, R. & Habetler, T. G. Harmonic and Unbalance Compensation Based on Direct Power Control for Electric Railway Systems. IEEE Trans. Power Electron. 28, 5823–5831 (2013) – 10.1109/tpel.2013.2253803
  • Trovão, J. P. & Antunes, C. H. A comparative analysis of meta-heuristic methods for power management of a dual energy storage system for electric vehicles. Energy Conversion and Management 95, 281–296 (2015) – 10.1016/j.enconman.2015.02.030
  • Li, Q., Chen, W., Liu, Z., Li, M. & Ma, L. Development of energy management system based on a power sharing strategy for a fuel cell-battery-supercapacitor hybrid tramway. Journal of Power Sources 279, 267–280 (2015) – 10.1016/j.jpowsour.2014.12.042
  • Wang, B., Xu, J., Cao, B. & Zhou, X. A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles. Journal of Power Sources 281, 432–443 (2015) – 10.1016/j.jpowsour.2015.02.012
  • Hung, Y.-H. & Wu, C.-H. A combined optimal sizing and energy management approach for hybrid in-wheel motors of EVs. Applied Energy 139, 260–271 (2015) – 10.1016/j.apenergy.2014.11.028
  • Bizon, N., Oproescu, M. & Raceanu, M. Efficient energy control strategies for a Standalone Renewable/Fuel Cell Hybrid Power Source. Energy Conversion and Management 90, 93–110 (2015) – 10.1016/j.enconman.2014.11.002
  • Amjadi, Z. & Williamson, S. S. Prototype Design and Controller Implementation for a Battery-Ultracapacitor Hybrid Electric Vehicle Energy Storage System. IEEE Trans. Smart Grid 3, 332–340 (2012) – 10.1109/tsg.2011.2161623
  • Logerais, Study of photovoltaic energy storage by supercapacitors through both experimental and modelling approaches. J Sol Energy (2013)
  • Zandi, M. et al. Energy Management of a Fuel Cell/Supercapacitor/Battery Power Source for Electric Vehicular Applications. IEEE Trans. Veh. Technol. 60, 433–443 (2011) – 10.1109/tvt.2010.2091433
  • Falahi, M., Chou, H.-M., Ehsani, M., Xie, L. & Butler-Purry, K. L. Potential Power Quality Benefits of Electric Vehicles. IEEE Trans. Sustain. Energy 4, 1016–1023 (2013) – 10.1109/tste.2013.2263848
  • Thounthong, P., Luksanasakul, A., Koseeyaporn, P. & Davat, B. Intelligent Model-Based Control of a Standalone Photovoltaic/Fuel Cell Power Plant With Supercapacitor Energy Storage. IEEE Trans. Sustain. Energy 4, 240–249 (2013) – 10.1109/tste.2012.2214794
  • Torreglosa, J. P., Garcia, P., Fernandez, L. M. & Jurado, F. Predictive Control for the Energy Management of a Fuel-Cell–Battery–Supercapacitor Tramway. IEEE Trans. Ind. Inf. 10, 276–285 (2014) – 10.1109/tii.2013.2245140
  • Ratniyomchai, T., Hillmansen, S. & Tricoli, P. Recent developments and applications of energy storage devices in electrified railways. IET Electrical Syst in Trans 4, 9–20 (2014) – 10.1049/iet-est.2013.0031
  • Bayrak, G. & Cebeci, M. Grid connected fuel cell and PV hybrid power generating system design with Matlab Simulink. International Journal of Hydrogen Energy 39, 8803–8812 (2014) – 10.1016/j.ijhydene.2013.12.029
  • Jung, H., Wang, H. & Hu, T. Control design for robust tracking and smooth transition in power systems with battery/supercapacitor hybrid energy storage devices. Journal of Power Sources 267, 566–575 (2014) – 10.1016/j.jpowsour.2014.05.061
  • Becherif, M., Ayad, M. Y., Djerdir, A. & Miraoui, A. Electrical Train Feeding By Association Of Supercapacitors, Photovoltaic And Wind Generators. 2007 International Conference on Clean Electrical Power 55–60 (2007) doi:10.1109/iccep.2007.384186 – 10.1109/iccep.2007.384186
  • Rufer, A. & Barrade, P. A supercapacitor-based energy-storage system for elevators with soft commutated interface. IEEE Trans. on Ind. Applicat. 38, 1151–1159 (2002) – 10.1109/tia.2002.803021
  • Belhachemi, F., Rael, S. & Davat, B. A physical based model of power electric double-layer supercapacitors. Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129) vol. 5 3069–3076 – 10.1109/ias.2000.882604
  • Ohshima, (1998)
  • Halpin, S. M. & Ashcraft, S. R. Design considerations for single-phase uninterruptible power supplies using double-layer capacitors as the energy storage element. IAS ’96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting vol. 4 2396–2403 – 10.1109/ias.1996.563906
  • Conway, (1999)
  • Marquez, (2003)
  • Khalil, (2002)
  • Ramadan, H. S., Siguerdidjane, H., Petit, M. & Kaczmarek, R. Performance enhancement and robustness assessment of VSC–HVDC transmission systems controllers under uncertainties. International Journal of Electrical Power & Energy Systems 35, 34–46 (2012) – 10.1016/j.ijepes.2011.08.017
  • Ramadan, H. S., Siguerdidjane, H. & Petit, M. Robust nonlinear control strategy for HVDC light transmission systems technology. 2008 34th Annual Conference of IEEE Industrial Electronics 360–365 (2008) doi:10.1109/iecon.2008.4757980 – 10.1109/iecon.2008.4757980
  • Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics 34, 225–233 (1994) – 10.1016/0034-4877(94)90038-8
  • Wang, Y., Feng, G., Cheng, D. & Liu, Y. Adaptive L2 disturbance attenuation control of multi-machine power systems with SMES units. Automatica 42, 1121–1132 (2006)10.1016/j.automatica.2006.03.014
  • De Leon-Morales, J., Espinosa-Pérez, G. & Macias-Cardoso, I. Observer-based control of a synchronous generator: a Hamiltonian approach. International Journal of Electrical Power & Energy Systems 24, 655–663 (2002) – 10.1016/s0142-0615(01)00079-5
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002)10.1016/s0005-1098(01)00278-3
  • Becherif, M., Ortega, R., Mendes, E. & Lee, S. Passivity-based control of a doubly-fed induction generator interconnected with an induction motor. 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475) vol. 6 5657–5662 – 10.1109/cdc.2003.1271905
  • Becherif, M. & Mendes, E. STABILITY AND ROBUSTNESS OF DISTURBED-PORT CONTROLLED HAMILTONIAN SYSTEMS WITH DISSIPATION. IFAC Proceedings Volumes 38, 574–579 (2005)10.3182/20050703-6-cz-1902.00751