Authors

Olaf Stenull, Hans-Karl Janssen, Klaus Oerding

Abstract

We study the effects of surfaces on resistor percolation at the instance of a semi-infinite geometry. Particularly we are interested in the average resistance between two connected ports located on the surface. Based on general grounds as symmetries and relevance we introduce a field theoretic Hamiltonian for semi-infinite random resistor networks. We show that the surface contributes to the average resistance only in terms of corrections to scaling. These corrections are governed by surface resistance exponents. We carry out renormalization-group improved perturbation calculations for the special and the ordinary transition. We calculate the surface resistance exponents phiS and phiS(infinity) for the special and the ordinary transition, respectively, to one-loop order.

Citation

  • Journal: Physical Review E
  • Year: 2002
  • Volume: 63
  • Issue: 5
  • Pages:
  • Publisher: American Physical Society (APS)
  • DOI: 10.1103/physreve.63.056128

BibTeX

@article{Stenull_2001,
  title={{Effects of surfaces on resistor percolation}},
  volume={63},
  ISSN={1095-3787},
  DOI={10.1103/physreve.63.056128},
  number={5},
  journal={Physical Review E},
  publisher={American Physical Society (APS)},
  author={Stenull, Olaf and Janssen, Hans-Karl and Oerding, Klaus},
  year={2001}
}

Download the bib file

References

  • Harris, A. B. & Fisch, R. Critical Behavior of Random Resistor Networks. Phys. Rev. Lett. 38, 796–799 (1977) – 10.1103/physrevlett.38.796
  • Dasgupta, C., Harris, A. B. & Lubensky, T. C. Renormalization-group treatment of the random resistor network in6εdimensions. Phys. Rev. B 17, 1375–1382 (1978) – 10.1103/physrevb.17.1375
  • Stephen, M. J. Mean-field theory and critical exponents for a random resistor network. Phys. Rev. B 17, 4444–4453 (1978) – 10.1103/physrevb.17.4444
  • Harris, A. B. & Lubensky, T. C. Randomly dilutedxyand resistor networks near the percolation threshold. Phys. Rev. B 35, 6964–6986 (1987) – 10.1103/physrevb.35.6964
  • Stenull, O., Janssen, H. K. & Oerding, K. Critical exponents for diluted resistor networks. Phys. Rev. E 59, 4919–4930 (1999) – 10.1103/physreve.59.4919
  • Lubensky, T. C. & Wang, J. Percolation conductivity exponenttto second order inε=6-d. Phys. Rev. B 33, 4998–5009 (1986) – 10.1103/physrevb.33.4998
  • Lubensky, T. C. & Tremblay, A.-M. S. εexpansion for transport exponents of continuum percolating systems. Phys. Rev. B 34, 3408–3417 (1986) – 10.1103/physrevb.34.3408
  • Harris, A. B. Field-theoretic formulation of the randomly diluted nonlinear resistor network. Phys. Rev. B 35, 5056–5065 (1987) – 10.1103/physrevb.35.5056
  • Janssen, H., Stenull, O. & Oerding, K. Resistance of Feynman diagrams and the percolation backbone dimension. Phys. Rev. E 59, R6239–R6242 (1999) – 10.1103/physreve.59.r6239
  • Janssen, H. K. & Stenull, O. Diluted networks of nonlinear resistors and fractal dimensions of percolation clusters. Phys. Rev. E 61, 4821–4834 (2000) – 10.1103/physreve.61.4821
  • Park, Y., Harris, A. B. & Lubensky, T. C. Noise exponents of the random resistor network. Phys. Rev. B 35, 5048–5055 (1987) – 10.1103/physrevb.35.5048
  • Stenull, O. & Janssen, H. K. Master operators govern multifractality in percolation. Europhys. Lett. 51, 539–545 (2000) – 10.1209/epl/i2000-00372-y
  • Stenull, O. & Janssen, H.-K. Noisy random resistor networks: Renormalized field theory for the multifractal moments of the current distribution. Phys. Rev. E 63, (2001) – 10.1103/physreve.63.036103
  • H. W. Diehl, Phase Transitions and Critical Phenomena (1986)
  • Diehl, H. W. The Theory of Boundary Critical Phenomena. Int. J. Mod. Phys. B 11, 3503–3523 (1997) – 10.1142/s0217979297001751
  • Janssen, H. K., Schaub, B. & Schmittmann, B. Effects of surfaces on dynamic percolation. Phys. Rev. A 38, 6377–6383 (1988) – 10.1103/physreva.38.6377
  • Diehl, H. W. & Lam, P. M. Semi-infinite Potts model and percolation at surfaces. Z. Physik B - Condensed Matter 74, 395–401 (1989) – 10.1007/bf01307889
  • Zia, R. K. P. & Wallace, D. J. Critical behaviour of the continuous n-component Potts model. J. Phys. A: Math. Gen. 8, 1495–1507 (1975) – 10.1088/0305-4470/8/9/019
  • Lubensky, T. C. & Rubin, M. H. Critical phenomena in semi-infinite systems. II. Mean-field theory. Phys. Rev. B 12, 3885–3901 (1975) – 10.1103/physrevb.12.3885
  • I. S. Gradshteyn, Table of Integrals, Series, and Products, 4th ed. (1980)
  • D. J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (1984)
  • Zinn-Justin, J. Quantum Field Theory and Critical Phenomena. (2002) doi:10.1093/acprof:oso/9780198509233.001.0001 – 10.1093/acprof:oso/9780198509233.001.0001
  • Bonfim, O. F. de A., Kirkham, J. E. & McKane, A. J. Critical exponents to order ϵ3for ϕ3models of critical phenomena in 6-ϵ dimensions. J. Phys. A: Math. Gen. 13, L247–L251 (1980) – 10.1088/0305-4470/13/7/006
  • Bonfirm, O. F. de A., Kirkham, J. E. & McKane, A. J. Critical exponents for the percolation problem and the Yang-Lee edge singularity. J. Phys. A: Math. Gen. 14, 2391–2413 (1981) – 10.1088/0305-4470/14/9/034
  • Diehl, H. W. & Dietrich, S. Scaling laws and surface exponents from renormalization group equations. Physics Letters A 80, 408–412 (1980) – 10.1016/0375-9601(80)90783-5
  • Diehl, H. W. & Dietrich, S. Field-theoretical approach to static critical phenomena in semi-infinite systems. Z. Physik B - Condensed Matter 42, 65–86 (1981) – 10.1007/bf01298293
  • Diehl, H. W. & Dietrich, S. Field-theoretical approach to static critical phenomena in semi-infinite systems. Z. Physik B - Condensed Matter 43, 281–281 (1981) – 10.1007/bf01297529
  • Diehl, H. W., Dietrich, S. & Eisenriegler, E. Universality, irrelevant surface operators, and corrections to scaling in systems with free surfaces and defect planes. Phys. Rev. B 27, 2937–2954 (1983) – 10.1103/physrevb.27.2937