Dissipative Physical Systems
Authors
Bernard Brogliato, Rogelio Lozano, Bernhard Maschke, Olav Egeland
Abstract
In this chapter, we shall present a class of dissipative systems which correspond to models of physical systems, and hence embed in their structure the conservation of energy (first principle of thermodynamics) and the interaction with their environment through pairs of conjugated variables with respect to the power. First, we shall recall three different definitions of systems obtained by energy-based modeling: controlled Lagrangian, input–output Hamiltonian systems, and port-controlled Hamiltonian systems. We shall illustrate and compare these definitions on some simple examples.
Citation
- ISBN: 9783030194192
- Publisher: Springer International Publishing
- DOI: 10.1007/978-3-030-19420-8_6
BibTeX
@inbook{Brogliato_2019,
title={{Dissipative Physical Systems}},
ISBN={9783030194208},
ISSN={2197-7119},
DOI={10.1007/978-3-030-19420-8_6},
booktitle={{Dissipative Systems Analysis and Control}},
publisher={Springer International Publishing},
author={Brogliato, Bernard and Lozano, Rogelio and Maschke, Bernhard and Egeland, Olav},
year={2019},
pages={429--490}
}
References
- R Abraham, Foundations of mechanics (1978)
- C Lanczos, The variational principles of mechanics (1970)
- Libermann, P. & Marle, C.-M. Symplectic Geometry and Analytical Mechanics. (Springer Netherlands, 1987). doi:10.1007/978-94-009-3807-6 – 10.1007/978-94-009-3807-6
- van der Schaft, A. J. System theory and mechanics. Lecture Notes in Control and Information Sciences 426–452 (1989) doi:10.1007/bfb0008472 – 10.1007/bfb0008472
- Takegaki, M. & Arimoto, S. A New Feedback Method for Dynamic Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control 103, 119–125 (1981) – 10.1115/1.3139651
- RM Murray, A mathematical introduction to robotic manipulation (1994)
- Jones, D. L. & Evans, F. J. A classification of physical variables and its application in variational methods. Journal of the Franklin Institute 291, 449–467 (1971) – 10.1016/0016-0032(71)90003-2
- Bernstein, G. M. & Lieberman, M. A. A method for obtaining a canonical Hamiltonian for nonlinear LC circuits. IEEE Trans. Circuits Syst. 36, 411–420 (1989) – 10.1109/31.17588
- Chua, L. & McPherson, J. Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks. IEEE Trans. Circuits Syst. 21, 277–286 (1974) – 10.1109/tcs.1974.1083849
- Glocker, C. Models of non-smooth switches in electrical systems. Int. J. Circ. Theor. Appl. 33, 205–234 (2005) – 10.1002/cta.316
- Möller, M. & Glocker, C. Non-smooth modelling of electrical systems using the flux approach. Nonlinear Dyn 50, 273–295 (2007) – 10.1007/s11071-006-9157-2
- Acary, V., Bonnefon, O. & Brogliato, B. Nonsmooth Modeling and Simulation for Switched Circuits. Lecture Notes in Electrical Engineering (Springer Netherlands, 2011). doi:10.1007/978-90-481-9681-4 – 10.1007/978-90-481-9681-4
- Szatkowski, A. Remark on ‘Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks’. IEEE Trans. Circuits Syst. 26, 358–360 (1979) – 10.1109/tcs.1979.1084647
- Maschke, B. M., van der Schaft, A. J. & Breedveld, P. C. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Trans. Circuits Syst. I 42, 73–82 (1995) – 10.1109/81.372847
- RW Brockett, Geometric control theory (1977)
- García de Jalón, J. & Gutiérrez-López, M. D. Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces. Multibody Syst Dyn 30, 311–341 (2013) – 10.1007/s11044-013-9358-7
- Brogliato, B. & Goeleven, D. Singular mass matrix and redundant constraints in unilaterally constrained Lagrangian and Hamiltonian systems. Multibody Syst Dyn 35, 39–61 (2014) – 10.1007/s11044-014-9437-4
- Merkin, D. R. Introduction. Texts in Applied Mathematics 1–4 (1997) doi:10.1007/978-1-4612-4046-4_1 – 10.1007/978-1-4612-4046-4_1
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Nijmeijer, H. & van der Schaft, A. Nonlinear Dynamical Control Systems. (Springer New York, 1990). doi:10.1007/978-1-4757-2101-0 – 10.1007/978-1-4757-2101-0
- Isidori, A. Nonlinear Control Systems. Communications and Control Engineering (Springer London, 1995). doi:10.1007/978-1-84628-615-5 – 10.1007/978-1-84628-615-5
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute 329, 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- BRANIN, F. H., JR. THE NETWORK CONCEPT AS A UNIFYING PRINCIPLE IN ENGINEERING AND THE PHYSICAL SCIENCES. Problem Analysis in Science and Engineering 41–111 (1977) doi:10.1016/b978-0-12-125550-3.50007-7 – 10.1016/b978-0-12-125550-3.50007-7
- HM Paynter, Analysis and design of engineering systems (1961)
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics 34, 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- Loncaric, J. Normal forms of stiffness and compliance matrices. IEEE J. Robot. Automat. 3, 567–572 (1987) – 10.1109/jra.1987.1087148
- Fasse, E. D. & Breedveld, P. C. Modeling of Elastically Coupled Bodies: Part I—General Theory and Geometric Potential Function Method. Journal of Dynamic Systems, Measurement, and Control 120, 496–500 (1998) – 10.1115/1.2801491
- Fasse, E. D. & Breedveld, P. C. Modeling of Elastically Coupled Bodies: Part II—Exponential and Generalized Coordinate Methods. Journal of Dynamic Systems, Measurement, and Control 120, 501–506 (1998) – 10.1115/1.2801492
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- van der Schaft, A. & Maschke, B. Interconnected mechanical systems, part I: geometry of interconnection and implicit Hamiltonian systems. Modelling and Control of Mechanical Systems 1–15 (1997) doi:10.1142/9781848160873_0001 – 10.1142/9781848160873_0001
- Spong, M. W. Modeling and Control of Elastic Joint Robots. Journal of Dynamic Systems, Measurement, and Control 109, 310–318 (1987) – 10.1115/1.3143860
- Tomei, P. A simple PD controller for robots with elastic joints. IEEE Trans. Automat. Contr. 36, 1208–1213 (1991) – 10.1109/9.90238
- Paoli, L. & Schatzman, M. Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales : cas avec perte d’énergie. ESAIM: M2AN 27, 673–717 (1993) – 10.1051/m2an/1993270606731
- Acary, V., de Jong, H. & Brogliato, B. Numerical simulation of piecewise-linear models of gene regulatory networks using complementarity systems. Physica D: Nonlinear Phenomena 269, 103–119 (2014) – 10.1016/j.physd.2013.11.013
- Brogliato, B. Erratum to: Nonsmooth Mechanics. Communications and Control Engineering E1–E11 (2016) doi:10.1007/978-3-319-28664-8_9 – 10.1007/978-3-319-28664-8_9
- Brogliato, B. Some perspectives on the analysis and control of complementarity systems. IEEE Trans. Automat. Contr. 48, 918–935 (2003) – 10.1109/tac.2003.812777
- Georgescu, C., Brogliato, B. & Acary, V. Switching, relay and complementarity systems: A tutorial on their well-posedness and relationships. Physica D: Nonlinear Phenomena 241, 1985–2002 (2012) – 10.1016/j.physd.2011.10.014
- Imura, J. & van der Schaft, A. Characterization of well-posedness of piecewise-linear systems. IEEE Trans. Automat. Contr. 45, 1600–1619 (2000) – 10.1109/9.880612
- Imura, J. Well-posedness analysis of switch-driven piecewise affine systems. IEEE Trans. Automat. Contr. 48, 1926–1935 (2003) – 10.1109/tac.2003.819075
- Spraker, J. S. A Comparison of the Carathéodory and Filippov Solution Sets. Journal of Mathematical Analysis and Applications 198, 571–580 (1996) – 10.1006/jmaa.1996.0099
- Thuan, L. Q. & Camlibel, M. K. On the existence, uniqueness and nature of Carathéodory and Filippov solutions for bimodal piecewise affine dynamical systems. Systems & Control Letters 68, 76–85 (2014) – 10.1016/j.sysconle.2014.02.009
- Zolezzi, T. Differential Inclusions and Sliding Mode Control. Automation and Control Engineering (2002) doi:10.1201/9780203910856.ch2 – 10.1201/9780203910856.ch2
- T Kailath, Linear systems (1980)
- Zhao, J. & Hill, D. J. Dissipativity Theory for Switched Systems. IEEE Trans. Automat. Contr. 53, 941–953 (2008) – 10.1109/tac.2008.920237
- D Yang, Noninear Anal: Hybrid Syst (2018)
- Dong, X. & Zhao, J. Incremental passivity and output tracking of switched nonlinear systems. International Journal of Control 85, 1477–1485 (2012) – 10.1080/00207179.2012.690075
- H Pang, Nonlinear Anal: Hybrid Syst (2018)
- Pang, H. & Zhao, J. Incremental (Q,S,R)-dissipativity and incremental stability for switched nonlinear systems. Journal of the Franklin Institute 353, 4542–4564 (2016) – 10.1016/j.jfranklin.2016.08.022
- Pang, H. & Zhao, J. Adaptive passification and stabilization for switched nonlinearly parameterized systems. Int. J. Robust. Nonlinear Control 27, 1147–1170 (2016) – 10.1002/rnc.3620
- Geromel, J. C., Colaneri, P. & Bolzern, P. Passivity of switched linear systems: Analysis and control design. Systems & Control Letters 61, 549–554 (2012) – 10.1016/j.sysconle.2012.02.008
- Zhao, J. & Hill, D. J. Passivity and stability of switched systems: A multiple storage function method. Systems & Control Letters 57, 158–164 (2008) – 10.1016/j.sysconle.2007.08.011
- Aleksandrov, A. Yu. & Platonov, A. V. On absolute stability of one class of nonlinear switched systems. Autom Remote Control 69, 1101–1116 (2008) – 10.1134/s0005117908070011
- Antsaklis, P. J. et al. Control of cyberphysical systems using passivity and dissipativity based methods. European Journal of Control 19, 379–388 (2013) – 10.1016/j.ejcon.2013.05.018
- Acary, V. & Brogliato, B. Numerical Methods for Nonsmooth Dynamical Systems. Lecture Notes in Applied and Computational Mechanics (Springer Berlin Heidelberg, 2008). doi:10.1007/978-3-540-75392-6 – 10.1007/978-3-540-75392-6
- King, C. & Shorten, R. An extension of the KYP-lemma for the design of state-dependent switching systems with uncertainty. Systems & Control Letters 62, 626–631 (2013) – 10.1016/j.sysconle.2013.03.005
- Samadi, B. & Rodrigues, L. A unified dissipativity approach for stability analysis of piecewise smooth systems. Automatica 47, 2735–2742 (2011) – 10.1016/j.automatica.2011.09.018
- Johansson, M. Piecewise Linear Control Systems. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 2002). doi:10.1007/3-540-36801-9 – 10.1007/3-540-36801-9
- Li, J., Zhao, J. & Chen, C. Dissipativity and feedback passivation for switched discrete-time nonlinear systems. Systems & Control Letters 87, 47–55 (2016) – 10.1016/j.sysconle.2015.10.005
- Bemporad, A., Bianchini, G. & Brogi, F. Passivity Analysis and Passification of Discrete-Time Hybrid Systems. IEEE Trans. Automat. Contr. 53, 1004–1009 (2008) – 10.1109/tac.2008.919564
- Li, J. & Zhao, J. Passivity and feedback passification of switched discrete-time linear systems. Systems & Control Letters 62, 1073–1081 (2013) – 10.1016/j.sysconle.2013.08.003
- Brogliato, B. & Rey, D. Further experimental results on nonlinear control of flexible joint manipulators. Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207) 2209–2211 vol.4 (1998) doi:10.1109/acc.1998.703019 – 10.1109/acc.1998.703019
- Ortega, R. & Espinosa, G. Torque regulation of induction motors. Automatica 29, 621–633 (1993) – 10.1016/0005-1098(93)90059-3
- Maschke, B. M. J. & van der Schaft, A. J. Interconnected mechanical systems, part II: the dynamics of spatial mechanical networks. Modelling and Control of Mechanical Systems 17–30 (1997) doi:10.1142/9781848160873_0002 – 10.1142/9781848160873_0002
- Marle, C.-M. Various approaches to conservative and nonconservative nonholonomic systems. Reports on Mathematical Physics 42, 211–229 (1998) – 10.1016/s0034-4877(98)80011-6
- Schaft, A. J. van der. Equations of motion for Hamiltonian systems with constraints. J. Phys. A: Math. Gen. 20, 3271–3277 (1987) – 10.1088/0305-4470/20/11/030
- McClamroch, N. H. & Wang, D. Feedback stabilization and tracking of constrained robots. IEEE Trans. Automat. Contr. 33, 419–426 (1988) – 10.1109/9.1220
- G Campion, Advanced robot control (1990)
- Adly, S. & Goeleven, D. A stability theory for second-order nonsmooth dynamical systems with application to friction problems. Journal de Mathématiques Pures et Appliquées 83, 17–51 (2004) – 10.1016/s0021-7824(03)00071-0
- Mabrouk, M. A unified variational model for the dynamics of perfect unilateral constraints. European Journal of Mechanics - A/Solids 17, 819–842 (1998) – 10.1016/s0997-7538(98)80007-7
- Nonsmooth Mechanics and Applications. (Springer Vienna, 1988). doi:10.1007/978-3-7091-2624-0 – 10.1007/978-3-7091-2624-0
- Ballard, P. Formulation and well-posedness of the dynamics of rigid-body systems with perfect unilateral constraints. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359, 2327–2346 (2001) – 10.1098/rsta.2001.0854
- Brogliato, B. On the control of non-smooth complementarity dynamical systems. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359, 2369–2383 (2001) – 10.1098/rsta.2001.0856
- Kunze, M. & Marques, M. D. P. M. An Introduction to Moreau’s Sweeping Process. Lecture Notes in Physics 1–60 (2000) doi:10.1007/3-540-45501-9_1 – 10.1007/3-540-45501-9_1
- Kunze, M. & Marques, M. D. P. M. An Introduction to Moreau’s Sweeping Process. Lecture Notes in Physics 1–60 (2000) doi:10.1007/3-540-45501-9_1 – 10.1007/3-540-45501-9_1
- Lötstedt, P. Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints. SIAM J. Appl. Math. 42, 281–296 (1982) – 10.1137/0142022
- Hiriart-Urruty, J.-B. & Lemaréchal, C. Fundamentals of Convex Analysis. (Springer Berlin Heidelberg, 2001). doi:10.1007/978-3-642-56468-0 – 10.1007/978-3-642-56468-0
- Moreau, J. J. & Valadier, M. A chain rule involving vector functions of bounded variation. Journal of Functional Analysis 74, 333–345 (1987) – 10.1016/0022-1236(87)90029-2
- W Rudin, Analyse Réelle et Complexe (1998)