Authors

Jiayi Liu, Huihui Song, Chenyue Chen, Josep M. Guerrero, Meng Liu, Yanbin Qu

Abstract

This paper presents an innovative passivity-based \\( L_{2} \\) -gain performance \\( (L_{2} \\) -GP) adaptive robust control method for the design of primary and secondary frequency control in the low-inertia microgrid with lines and the inverter-interfaced generation. First, by exploiting and analyzing the internal structural properties, the Port-controlled Kuramoto-Hamiltonian model with dissipation for the microgrid system is derived. Combining the dynamics of Kuramoto oscillators with energy viewpoints and following the physical features of dynamic energy coordination in the microgrid, an adaptive robust \\( L_{2} \\) -GP decentralized secondary control is developed to guarantee frequency restoration and active power sharing. An adaptive mechanism is adopted to estimate the electrical parameters so that the parameter randomness can be overcome and fast transient response, high performance, and robust stability can be achieved. Via local measurements, the decentralized framework accordingly obviates the need of any communication links for information broadcast or exchange. Finally, the comprehensive case studies are presented to validate satisfactory performance under rapid randomness and flexibility during plug-and-play operations.

Citation

  • Journal: IEEE Transactions on Smart Grid
  • Year: 2024
  • Volume: 15
  • Issue: 1
  • Pages: 67–76
  • Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  • DOI: 10.1109/tsg.2023.3274235

BibTeX

@article{Liu_2024,
  title={{Decentralized Secondary Frequency Control of Autonomous Microgrids via Adaptive Robust -Gain Performance<i/>
                  <sub/>},
  volume={15},
  ISSN={1949-3061},
  DOI={10.1109/tsg.2023.3274235},
  number={1},
  journal={IEEE Transactions on Smart Grid},
  publisher={Institute of Electrical and Electronics Engineers (IEEE)},
  author={Liu, Jiayi and Song, Huihui and Chen, Chenyue and Guerrero, Josep M. and Liu, Meng and Qu, Yanbin},
  year={2024},
  pages={67--76}
}

Download the bib file

References

  • Farrokhabadi, M. et al. Microgrid Stability Definitions, Analysis, and Examples. IEEE Trans. Power Syst. 35, 13–29 (2020) – 10.1109/tpwrs.2019.2925703
  • Hussain, A., Bui, V.-H. & Kim, H.-M. Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience. Applied Energy 240, 56–72 (2019) – 10.1016/j.apenergy.2019.02.055
  • Olivares, D. E. et al. Trends in Microgrid Control. IEEE Trans. Smart Grid 5, 1905–1919 (2014) – 10.1109/tsg.2013.2295514
  • Khayat, Y. et al. On the Secondary Control Architectures of AC Microgrids: An Overview. IEEE Trans. Power Electron. 35, 6482–6500 (2020) – 10.1109/tpel.2019.2951694
  • Han, H. et al. Review of Power Sharing Control Strategies for Islanding Operation of AC Microgrids. IEEE Trans. Smart Grid 7, 200–215 (2016) – 10.1109/tsg.2015.2434849
  • Majumder, R. et al. Improvement of Stability and Load Sharing in an Autonomous Microgrid Using Supplementary Droop Control Loop. IEEE Trans. Power Syst. 25, 796–808 (2010) – 10.1109/tpwrs.2009.2032049
  • Qian, T., Liu, Y., Zhang, W., Tang, W. & Shahidehpour, M. Event-Triggered Updating Method in Centralized and Distributed Secondary Controls for Islanded Microgrid Restoration. IEEE Trans. Smart Grid 11, 1387–1395 (2020) – 10.1109/tsg.2019.2937366
  • de Nadai Nascimento, B. et al. Centralised secondary control for islanded microgrids. IET Renewable Power Gen 14, 1502–1511 (2020) – 10.1049/iet-rpg.2019.0731
  • Liu, J., Li, J., Song, H., Nawaz, A. & Qu, Y. Nonlinear Secondary Voltage Control of Islanded Microgrid via Distributed Consistency. IEEE Trans. Energy Convers. 35, 1964–1972 (2020) – 10.1109/tec.2020.2998897
  • Liu, J., Jiang, S., Qu, Y., Zhang, X. & Song, H. Global stability analysis for coupled control systems and its application: Practical aspects and novel control. Journal of the Franklin Institute 358, 5676–5693 (2021) – 10.1016/j.jfranklin.2021.04.043
  • Khayat, Y. et al. Decentralized Optimal Frequency Control in Autonomous Microgrids. IEEE Trans. Power Syst. 34, 2345–2353 (2019) – 10.1109/tpwrs.2018.2889671
  • Weitenberg, E. et al. Robust Decentralized Secondary Frequency Control in Power Systems: Merits and Tradeoffs. IEEE Trans. Automat. Contr. 64, 3967–3982 (2019) – 10.1109/tac.2018.2884650
  • Sahoo, A. K. et al. Communication-Less Primary and Secondary Control in Inverter-Interfaced AC Microgrid: An Overview. IEEE J. Emerg. Sel. Topics Power Electron. 9, 5164–5182 (2021) – 10.1109/jestpe.2020.2974046
  • Simpson-Porco, J. W. et al. Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging. IEEE Trans. Ind. Electron. 62, 7025–7038 (2015) – 10.1109/tie.2015.2436879
  • Sadabadi, M. S. Line-Independent Plug-and-Play Voltage Stabilization and ℒ₂ Gain Performance of DC Microgrids. IEEE Control Syst. Lett. 5, 1609–1614 (2021) – 10.1109/lcsys.2020.3041335
  • Lian, Decentralized secondary control for frequency restoration and power allocation in islanded AC microgrids. Proc. SSRN
  • Yazdanian, M. & Mehrizi-Sani, A. Washout Filter-Based Power Sharing. IEEE Trans. Smart Grid 1–2 (2015) doi:10.1109/tsg.2015.2497964 – 10.1109/tsg.2015.2497964
  • Han, Y., Li, H., Xu, L., Zhao, X. & Guerrero, J. M. Analysis of Washout Filter-Based Power Sharing Strategy—An Equivalent Secondary Controller for Islanded Microgrid Without LBC Lines. IEEE Trans. Smart Grid 9, 4061–4076 (2018) – 10.1109/tsg.2017.2647958
  • Biglarahmadi, M., Ketabi, A., Reza Baghaee, H. & Guerrero, J. M. Integrated Nonlinear Hierarchical Control and Management of Hybrid AC/DC Microgrids. IEEE Systems Journal 16, 902–913 (2022) – 10.1109/jsyst.2021.3050334
  • Mondal, A. & Illindala, M. S. Improved Frequency Regulation in an Islanded Mixed Source Microgrid Through Coordinated Operation of DERs and Smart Loads. IEEE Trans. on Ind. Applicat. 54, 112–120 (2018) – 10.1109/tia.2017.2761825
  • Yu, S., Zhang, L., Lu, H. H.-C., Fernando, T. & Wong, K. P. A DSE-Based Power System Frequency Restoration Strategy for PV-Integrated Power Systems Considering Solar Irradiance Variations. IEEE Trans. Ind. Inf. 13, 2511–2518 (2017) – 10.1109/tii.2017.2694865
  • Kosari, M. & Hosseinian, S. H. Decentralized Reactive Power Sharing and Frequency Restoration in Islanded Microgrid. IEEE Trans. Power Syst. 32, 2901–2912 (2017) – 10.1109/tpwrs.2016.2621033
  • Liu, J., Cui, Y., Song, H., Zhang, X. & Qu, Y. Stability analysis of T-S fuzzy-model-based coupled control systems with nonlinear T-S fuzzy control and its application. Neural Comput & Applic 33, 15481–15493 (2021) – 10.1007/s00521-021-06170-9
  • Zhang, H., Du, X., Liu, J., Kim, H.-M. & Song, H. Graph theory-based approach for stability analysis of stochastic coupled oscillators system by energy-based synchronization control. Journal of the Franklin Institute 357, 7581–7596 (2020) – 10.1016/j.jfranklin.2020.05.022
  • Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B. & Talebi, H. A. A Decentralized Power Management and Sliding Mode Control Strategy for Hybrid AC/DC Microgrids including Renewable Energy Resources. IEEE Trans. Ind. Inf. 1–1 (2024) doi:10.1109/tii.2017.2677943 – 10.1109/tii.2017.2677943
  • Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B. & Talebi, H. A. Decentralized Sliding Mode Control of WG/PV/FC Microgrids Under Unbalanced and Nonlinear Load Conditions for On- and Off-Grid Modes. IEEE Systems Journal 12, 3108–3119 (2018) – 10.1109/jsyst.2017.2761792
  • Shotorbani, A. M., Ghassem-Zadeh, S., Mohammadi-Ivatloo, B. & Hosseini, S. H. A distributed secondary scheme with terminal sliding mode controller for energy storages in an islanded microgrid. International Journal of Electrical Power & Energy Systems 93, 352–364 (2017) – 10.1016/j.ijepes.2017.06.013
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002)10.1016/s0005-1098(01)00278-3
  • Wang, Y., Li, C. & Cheng, D. Generalized Hamiltonian realization of time-invariant nonlinear systems. Automatica 39, 1437–1443 (2003) – 10.1016/s0005-1098(03)00132-8
  • Zhang, X., Lu, Z., Yuan, X., Wang, Y. & Shen, X. L2-Gain Adaptive Robust Control for Hybrid Energy Storage System in Electric Vehicles. IEEE Trans. Power Electron. 36, 7319–7332 (2021)10.1109/tpel.2020.3041653
  • Wang, Y., Feng, G., Cheng, D. & Liu, Y. Adaptive L2 disturbance attenuation control of multi-machine power systems with SMES units. Automatica 42, 1121–1132 (2006) – 10.1016/j.automatica.2006.03.014
  • Alberto, Nonlinear Control Systems II (1999)
  • Wang, J. & Cheng, D. Stability of switched nonlinear systems via extensions of LaSalle’s invariance principle. Sci. China Ser. F-Inf. Sci. 52, 84–90 (2009) – 10.1007/s11432-009-0006-z