Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
Authors
Michael Günther, Birgit Jacob, Claudia Totzeck
Abstract
We present a gradient-based calibration algorithm to identify the system matrices of a linear port-Hamiltonian system from given input–output time data. Aiming for a direct structure-preserving approach, we employ techniques from optimal control with ordinary differential equations and define a constrained optimization problem. The input-to-state stability is discussed which is the key step towards the existence of optimal controls. Further, we derive the first-order optimality system taking into account the port-Hamiltonian structure. Indeed, the proposed method preserves the skew symmetry and positive (semi)-definiteness of the system matrices throughout the optimization iterations. Numerical results with perturbed and unperturbed synthetic data, as well as an example from the PHS benchmark collection [ 17 ] demonstrate the feasibility of the approach.
Keywords
Port-Hamiltonian systems; Data-driven approach; Optimal control; Adjoint-based calibration; Time domain; Coupled dynamical systems; Structure preservation; 37J06; 37M99; 49J15; 49K15; 49M29; 49Q12; 65P10; 93A30; 93B30; 93C05
Citation
- Journal: Mathematics of Control, Signals, and Systems
- Year: 2024
- Volume: 36
- Issue: 4
- Pages: 957–977
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00498-024-00389-2
BibTeX
@article{G_nther_2024,
title={{Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain}},
volume={36},
ISSN={1435-568X},
DOI={10.1007/s00498-024-00389-2},
number={4},
journal={Mathematics of Control, Signals, and Systems},
publisher={Springer Science and Business Media LLC},
author={Günther, Michael and Jacob, Birgit and Totzeck, Claudia},
year={2024},
pages={957--977}
}
References
- Antoulas, A. C., Lefteriu, S. & Ionita, A. C. Chapter 8: A Tutorial Introduction to the Loewner Framework for Model Reduction. Model Reduction and Approximation 335–376 (2017) doi:10.1137/1.9781611974829.ch8 – 10.1137/1.9781611974829.ch8
- Absil, P.-A., Mahony, R. & Sepulchre, R. Optimization Algorithms on Matrix Manifolds. (2008) doi:10.1515/9781400830244 – 10.1515/9781400830244
- Benner, P., Goyal, P. & Van Dooren, P. Identification of port-Hamiltonian systems from frequency response data. Systems & Control Letters vol. 143 104741 (2020) – 10.1016/j.sysconle.2020.104741
- N Boumal. Boumal N, Mishra B, Absil P-A, Sepulchre R (2014) Manopt, a Matlab toolbox for optimization on manifolds. Journal of Machine Learning Research 15(42):1455–1459 (2014)
- Cherifi, K., Goyal, P. & Benner, P. A non-intrusive method to inferring linear port-Hamiltonian realizations using time-domain data. ETNA - Electronic Transactions on Numerical Analysis vol. 56 102–116 (2022) – 10.1553/etna_vol56s102
- Cherifi, K., Gernandt, H. & Hinsen, D. The difference between port-Hamiltonian, passive and positive real descriptor systems. Mathematics of Control, Signals, and Systems vol. 36 451–482 (2023) – 10.1007/s00498-023-00373-2
- Cherifi, K., Mehrmann, V. & Hariche, K. Numerical methods to compute a minimal realization of a port-Hamiltonian system. Preprint at https://doi.org/10.48550/ARXIV.1903.07042 (2019) – 10.48550/arxiv.1903.07042
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Günther, M., Jacob, B. & Totzeck, C. Structure-preserving identification of port-Hamiltonian systems – a sensitivity-based approach. Preprint at https://doi.org/10.48550/ARXIV.2301.02019 (2023) – 10.48550/arxiv.2301.02019
- M Hinze. Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2008) Optimization with PDE constraints. Springer (2008)
- Lennart Ljung. Ljung Lennart (1999) System Identification: Theory for the User. Prentice-Hall Inc, USA (1999)
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Morandin, R., Nicodemus, J. & Unger, B. Port-Hamiltonian Dynamic Mode Decomposition. SIAM Journal on Scientific Computing vol. 45 A1690–A1710 (2023) – 10.1137/22m149329x
- Sato, H. Riemannian Conjugate Gradient Methods: General Framework and Specific Algorithms with Convergence Analyses. SIAM Journal on Optimization vol. 32 2690–2717 (2022) – 10.1137/21m1464178
- Schwerdtner P (2021) Port-Hamiltonian system identification from noisy frequency response data. arXiv:2106.11355
- Schwerdtner P, Port-Hamiltonian benchmark systems, 8.12.2022. https://github.com/Algopaul/PortHamiltonianBenchmarkSystems.jl
- Teschl, G. Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics (2012) doi:10.1090/gsm/140 – 10.1090/gsm/140
- F Tröltzsch. Tröltzsch F (2010) Optimal control of partial differential equations: theory, methods, and applications. American Mathematical Soc (2010)
- A van der Schaft. van der Schaft A (2006) Port-Hamiltonian systems: an introductory survey. In Proceedings on the International Congress of Mathematicians 3:1339–1366 (2006)
- Willems, J. C. Dissipative dynamical systems Part II: Linear systems with quadratic supply rates. Archive for Rational Mechanics and Analysis vol. 45 352–393 (1972) – 10.1007/bf00276494