Authors

H. J. Shan, C. M. Dai, H. Z. Shen, X. X. Yi

Abstract

The spin chain is a system that has been widely studied for its quantum phase transition. It also holds potential for practical application in quantum information, including quantum communication and quantum computation. In this paper, we propose a scheme for conditional state transfer in a Heisenberg XXZ spin chain. In our scheme, the absence or presence of a periodic driving potential results in either a perfect state transfer between the input and output ports, or a complete blockade at the input port. This scheme is formalized by deriving an analytical expression of the effective Hamiltonian for the spin chain subject to a periodic driving field in the high-frequency limit. The influence of the derivation of the optimal parameter on the performance of the state transfer is also examined, showing the robustness of the spin chain for state transfer. In addition, the collective decoherence effect on the fidelity of state transfer is discussed. The proposed scheme paves the way for the realization of integrated quantum logic elements, and may find application in quantum information processing.

Citation

  • Journal: Scientific Reports
  • Year: 2018
  • Volume: 8
  • Issue: 1
  • Pages:
  • Publisher: Springer Science and Business Media LLC
  • DOI: 10.1038/s41598-018-31552-w

BibTeX

@article{Shan_2018,
  title={{Controlled state transfer in a Heisenberg spin chain by periodic drives}},
  volume={8},
  ISSN={2045-2322},
  DOI={10.1038/s41598-018-31552-w},
  number={1},
  journal={Scientific Reports},
  publisher={Springer Science and Business Media LLC},
  author={Shan, H. J. and Dai, C. M. and Shen, H. Z. and Yi, X. X.},
  year={2018}
}

Download the bib file

References

  • Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication. Phys. Rev. Lett. 81, 5932–5935 (1998) – 10.1103/physrevlett.81.5932
  • Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001) – 10.1038/35106500
  • Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001) – 10.1038/35051009
  • Bose, S. Quantum Communication through an Unmodulated Spin Chain. Phys. Rev. Lett. 91, (2003) – 10.1103/physrevlett.91.207901
  • Harneit, W. Fullerene-based electron-spin quantum computer. Phys. Rev. A 65, (2002) – 10.1103/physreva.65.032322
  • Brennen, G. K. & Miyake, A. Measurement-Based Quantum Computer in the Gapped Ground State of a Two-Body Hamiltonian. Phys. Rev. Lett. 101, (2008) – 10.1103/physrevlett.101.010502
  • Chuang, P. et al. All-electric all-semiconductor spin field-effect transistors. Nature Nanotech 10, 35–39 (2014) – 10.1038/nnano.2014.296
  • Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Applied Physics Letters 56, 665–667 (1990) – 10.1063/1.102730
  • Peng, X., Du, J. & Suter, D. Quantum phase transition of ground-state entanglement in a Heisenberg spin chain simulated in an NMR quantum computer. Phys. Rev. A 71, (2005) – 10.1103/physreva.71.012307
  • Marchukov, O. V., Volosniev, A. G., Valiente, M., Petrosyan, D. & Zinner, N. T. Quantum spin transistor with a Heisenberg spin chain. Nat Commun 7, (2016) – 10.1038/ncomms13070
  • KAY, A. PERFECT, EFFICIENT, STATE TRANSFER AND ITS APPLICATION AS A CONSTRUCTIVE TOOL. Int. J. Quantum Inform. 08, 641–676 (2010) – 10.1142/s0219749910006514
  • Tavernier, M. B. et al. Four-electron quantum dot in a magnetic field. Phys. Rev. B 68, (2003) – 10.1103/physrevb.68.205305
  • Szafran, B. et al. Exciton and negative trion dissociation by an external electric field in vertically coupled quantum dots. Phys. Rev. B 71, (2005) – 10.1103/physrevb.71.205316
  • Bloch, F. & Siegert, A. Magnetic Resonance for Nonrotating Fields. Phys. Rev. 57, 522–527 (1940) – 10.1103/physrev.57.522
  • Shirley, J. H. Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time. Phys. Rev. 138, B979–B987 (1965) – 10.1103/physrev.138.b979
  • Grifoni, M. & Hänggi, P. Driven quantum tunneling. Physics Reports 304, 229–354 (1998) – 10.1016/s0370-1573(98)00022-2
  • Ashhab, S., Johansson, J. R., Zagoskin, A. M. & Nori, F. Two-level systems driven by large-amplitude fields. Phys. Rev. A 75, (2007) – 10.1103/physreva.75.063414
  • Diehl, S. et al. Quantum states and phases in driven open quantum systems with cold atoms. Nature Phys 4, 878–883 (2008) – 10.1038/nphys1073
  • Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, (2010) – 10.1103/physrevb.82.235114
  • Lü, Z. & Zheng, H. Effects of counter-rotating interaction on driven tunneling dynamics: Coherent destruction of tunneling and Bloch-Siegert shift. Phys. Rev. A 86, (2012) – 10.1103/physreva.86.023831
  • Deffner, S. & Lutz, E. Energy–time uncertainty relation for driven quantum systems. J. Phys. A: Math. Theor. 46, 335302 (2013) – 10.1088/1751-8113/46/33/335302
  • Satanin, A. M., Denisenko, M. V., Gelman, A. I. & Nori, F. Amplitude and phase effects in Josephson qubits driven by a biharmonic electromagnetic field. Phys. Rev. B 90, (2014) – 10.1103/physrevb.90.104516
  • N Goldman, Phys. Rev. X (2014)
  • Chen, C., An, J.-H., Luo, H.-G., Sun, C. P. & Oh, C. H. Floquet control of quantum dissipation in spin chains. Phys. Rev. A 91, (2015) – 10.1103/physreva.91.052122
  • Li, L., Luo, X., Lü, X.-Y., Yang, X. & Wu, Y. Coherent destruction of tunneling in a lattice array with a controllable boundary. Phys. Rev. A 91, (2015) – 10.1103/physreva.91.063804
  • Shi, Z. C., Wang, W. & Yi, X. X. Quantum gates by periodic driving. Sci Rep 6, (2016) – 10.1038/srep22077
  • Khemani, V., Lazarides, A., Moessner, R. & Sondhi, S. L. Phase Structure of Driven Quantum Systems. Phys. Rev. Lett. 116, (2016) – 10.1103/physrevlett.116.250401
  • Leung, P. H. et al. Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force. Phys. Rev. Lett. 120, (2018) – 10.1103/physrevlett.120.020501
  • Oliver, W. D. et al. Mach-Zehnder Interferometry in a Strongly Driven Superconducting Qubit. Science 310, 1653–1657 (2005) – 10.1126/science.1119678
  • Economou, S. E., Sham, L. J., Wu, Y. & Steel, D. G. Proposal for optical U(1) rotations of electron spin trapped in a quantum dot. Phys. Rev. B 74, (2006) – 10.1103/physrevb.74.205415
  • Xu, X. et al. Coherent Optical Spectroscopy of a Strongly Driven Quantum Dot. Science 317, 929–932 (2007) – 10.1126/science.1142979
  • Greilich, A. et al. Ultrafast optical rotations of electron spins in quantum dots. Nature Phys 5, 262–266 (2009) – 10.1038/nphys1226
  • Barnes, E. & Das Sarma, S. Analytically Solvable Driven Time-Dependent Two-Level Quantum Systems. Phys. Rev. Lett. 109, (2012) – 10.1103/physrevlett.109.060401
  • Lee, C. M. & Hoban, M. J. Towards Device-Independent Information Processing on General Quantum Networks. Phys. Rev. Lett. 120, (2018) – 10.1103/physrevlett.120.020504
  • Wang, Z.-M., Wu, L.-A., Jing, J., Shao, B. & Yu, T. Nonperturbative dynamical decoupling control: A spin-chain model. Phys. Rev. A 86, (2012) – 10.1103/physreva.86.032303
  • Wang, Z.-M. et al. Fault-tolerant breathing pattern in optical lattices as a dynamical quantum memory. Phys. Rev. A 89, (2014) – 10.1103/physreva.89.042326
  • Baksic, A., Ribeiro, H. & Clerk, A. A. Speeding up Adiabatic Quantum State Transfer by Using Dressed States. Phys. Rev. Lett. 116, (2016) – 10.1103/physrevlett.116.230503
  • de Moraes Neto, G. D., Andrade, F. M., Montenegro, V. & Bose, S. Quantum state transfer in optomechanical arrays. Phys. Rev. A 93, (2016) – 10.1103/physreva.93.062339
  • Gorman, D. J., Young, K. C. & Whaley, K. B. Overcoming dephasing noise with robust optimal control. Phys. Rev. A 86, (2012) – 10.1103/physreva.86.012317
  • Koswara, A. & Chakrabarti, R. Robustness of controlled quantum dynamics. Phys. Rev. A 90, (2014) – 10.1103/physreva.90.043414
  • Bose, S. Quantum communication through spin chain dynamics: an introductory overview. Contemporary Physics 48, 13–30 (2007) – 10.1080/00107510701342313
  • Warburton, R. J. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000) – 10.1038/35016030
  • Troiani, F. et al. Molecular Engineering of Antiferromagnetic Rings for Quantum Computation. Phys. Rev. Lett. 94, (2005) – 10.1103/physrevlett.94.207208
  • Shi, T., Li, Y., Song, Z. & Sun, C.-P. Quantum-state transfer via the ferromagnetic chain in a spatially modulated field. Phys. Rev. A 71, (2005) – 10.1103/physreva.71.032309
  • Christandl, M. et al. Perfect transfer of arbitrary states in quantum spin networks. Phys. Rev. A 71, (2005) – 10.1103/physreva.71.032312
  • Burgarth, D. & Bose, S. Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels. Phys. Rev. A 71, (2005) – 10.1103/physreva.71.052315
  • Gladwell, G. M. L. Inverse Problems in Vibration. Mechanics: Dynamical Systems (Springer Netherlands, 1986). doi:10.1007/978-94-015-1178-0 – 10.1007/978-94-015-1178-0
  • Budini, A. A. Quantum systems subject to the action of classical stochastic fields. Phys. Rev. A 64, (2001) – 10.1103/physreva.64.052110
  • Chenu, A., Beau, M., Cao, J. & del Campo, A. Quantum Simulation of Generic Many-Body Open System Dynamics Using Classical Noise. Phys. Rev. Lett. 118, (2017) – 10.1103/physrevlett.118.140403
  • Yung, M.-H. & Bose, S. Perfect state transfer, effective gates, and entanglement generation in engineered bosonic and fermionic networks. Phys. Rev. A 71, (2005) – 10.1103/physreva.71.032310
  • Yung, M.-H. Quantum speed limit for perfect state transfer in one dimension. Phys. Rev. A 74, (2006) – 10.1103/physreva.74.030303