Controllability and Observablity of Nonlinear Port-Controlled Hamiltonian Systems
Authors
Abstract
A special kind of nonlinear port-controlled Hamilton system is researched. The controllability distribution and observability codistribution of the kind of nonlinear port-controlled Hamilton systems are disused by using differential geometric of nonlinear control system. At the same time, the controllability and observability of the nonlinear port-controlled Hamilton systems are disused. Then the relation between the controllability and observability is studied.
Citation
- Journal: 2010 International Conference on Measuring Technology and Mechatronics Automation
- Year: 2010
- Volume:
- Issue:
- Pages: 849–852
- Publisher: IEEE
- DOI: 10.1109/icmtma.2010.700
BibTeX
@inproceedings{Ji_2010,
title={{Controllability and Observablity of Nonlinear Port-Controlled Hamiltonian Systems}},
DOI={10.1109/icmtma.2010.700},
booktitle={{2010 International Conference on Measuring Technology and Mechatronics Automation}},
publisher={IEEE},
author={Ji, Xingmin},
year={2010},
pages={849--852}
}
References
- Nijmeijer, H. & van der Schaft, A. Nonlinear Dynamical Control Systems. (Springer New York, 1990). doi:10.1007/978-1-4757-2101-0 – 10.1007/978-1-4757-2101-0
- Isidori, A. Nonlinear Control Systems. (Springer Berlin Heidelberg, 1989). doi:10.1007/978-3-662-02581-9 – 10.1007/978-3-662-02581-9
- cheng, Geometric theory of nonlinear systems[M] (1987)
- feng, Analysis and design of nonlinear control systems(2nd)[M] (1998)
- Maschke, B. M., van der Schaft, A. J. & Breedveld, P. C. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Trans. Circuits Syst. I 42, 73–82 (1995) – 10.1109/81.372847
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der schaft, Implicit Port-Controlled Hamiltonian Systems[J]. J of the society of Instrument and Control Engineers of Janpan(SICE) (2000)
- van der schaft, Port-controlled Hamiltonian Systems: Towards a Theory for Control and Design of Nonlinear Physical Systems[J]. J of the society of Instrument and Control Engineers of Janpan(SICE) (2000)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- van der Schaft, A. J., Dalsmo, M. & Maschke, B. M. Mathematical structures in the network representation of energy-conserving physical systems. Proceedings of 35th IEEE Conference on Decision and Control vol. 1 201–206 – 10.1109/cdc.1996.574296
- blankenstein, Implicit Hamiltonian Systems: Symmetry and Interconnection[D]. (2000)
- maschke, Port-Controlled Hamiltonian Systems: Modelling Origins and System Theoretic Properties [C]. IFAC Symp Nonlinear Control Systems Design (1992)
- Blankenstein, G. & van der Schaft, A. J. Symmetry and reduction in implicit generalized Hamiltonian systems. Reports on Mathematical Physics 47, 57–100 (2001) – 10.1016/s0034-4877(01)90006-0