Conservation laws analysis of nonlinear partial differential equations and their linear soliton solutions and Hamiltonian structures
Authors
Long Ju, Jian Zhou, Yufeng Zhang
Abstract
Citation
- Journal: Communications in Analysis and Mechanics
- Year: 2023
- Volume: 15
- Issue: 2
- Pages: 24–49
- Publisher: American Institute of Mathematical Sciences (AIMS)
- DOI: 10.3934/cam.2023002
BibTeX
@article{Ju_2023,
title={{Conservation laws analysis of nonlinear partial differential equations and their linear soliton solutions and Hamiltonian structures}},
volume={15},
ISSN={2836-3310},
DOI={10.3934/cam.2023002},
number={2},
journal={Communications in Analysis and Mechanics},
publisher={American Institute of Mathematical Sciences (AIMS)},
author={Ju, Long and Zhou, Jian and Zhang, Yufeng},
year={2023},
pages={24--49}
}
References
- Olver, P. J. Symmetries and Differential Equations (G. W. Bluman and S. Kumei). SIAM Review vol. 32 517–519 (1990) – 10.1137/1032114
- Tu, G. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. Journal of Mathematical Physics vol. 30 330–338 (1989) – 10.1063/1.528449
- San, S., Akbulut, A., Ünsal, Ö. & Taşcan, F. Conservation laws and double reduction of (2+1) dimensional Calogero–Bogoyavlenskii–Schiff equation. Mathematical Methods in the Applied Sciences vol. 40 1703–1710 (2016) – 10.1002/mma.4091
- Simkins, L. Instructions as discriminative stimuli in verbal conditioning and awareness. The Journal of Abnormal and Social Psychology vol. 66 213–219 (1963) – 10.1037/h0047923
- ANCO, S. C. & BLUMAN, G. Direct construction method for conservationlaws of partial differential equationsPart I: Examples of conservation lawclassifications. European Journal of Applied Mathematics vol. 13 545–566 (2002) – 10.1017/s095679250100465x
- ANCO, S. C. & BLUMAN, G. Direct construction method for conservationlaws of partial differential equationsPart II: General treatment. European Journal of Applied Mathematics vol. 13 567–585 (2002) – 10.1017/s0956792501004661
- Anco, S. C. & Bluman, G. Direct Construction of Conservation Laws from Field Equations. Physical Review Letters vol. 78 2869–2873 (1997) – 10.1103/physrevlett.78.2869
- ANCO, S. C. & BLUMAN, G. Integrating factors and first integrals for ordinary differential equations. European Journal of Applied Mathematics vol. 9 245–259 (1998) – 10.1017/s0956792598003477
- Ibragimov, N. H. Nonlinear self-adjointness and conservation laws. Journal of Physics A: Mathematical and Theoretical vol. 44 432002 (2011) – 10.1088/1751-8113/44/43/432002
- Wang, H. & Zhang, Y. Self-adjointness and conservation laws of Burgers-type equations. Modern Physics Letters B vol. 35 2150161 (2021) – 10.1142/s021798492150161x
- Ibragimov, N. H. Integrating factors, adjoint equations and Lagrangians. Journal of Mathematical Analysis and Applications vol. 318 742–757 (2006) – 10.1016/j.jmaa.2005.11.012
- Ibragimov, N. H. A new conservation theorem. Journal of Mathematical Analysis and Applications vol. 333 311–328 (2007) – 10.1016/j.jmaa.2006.10.078
- Ibragimov, N. H. Conservation laws and non-invariant solutions of anisotropic wave equations with a source. Nonlinear Analysis: Real World Applications vol. 40 82–94 (2018) – 10.1016/j.nonrwa.2017.08.005
- Anco, S. C. & Wang, B. A formula for symmetry recursion operators from non-variational symmetries of partial differential equations. Letters in Mathematical Physics vol. 111 (2021) – 10.1007/s11005-021-01413-1
- Anco, S. C. Symmetry properties of conservation laws. International Journal of Modern Physics B vol. 30 1640003 (2016) – 10.1142/s0217979216400038
- Gu, X. & Ma, W. On a class of coupled Hamiltonian operators and their integrable hierarchies with two potentials. Mathematical Methods in the Applied Sciences vol. 41 3779–3789 (2018) – 10.1002/mma.4864
- Manukure, S. Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of a bi-Hamiltonian soliton hierarchy by symmetry constraints. Communications in Nonlinear Science and Numerical Simulation vol. 57 125–135 (2018) – 10.1016/j.cnsns.2017.09.016
- Zhang, J., Gongye, Y. & Ma, W. The relationship between the conservation laws and multi‐Hamiltonian structures of the Kundu equation. Mathematical Methods in the Applied Sciences vol. 45 9006–9020 (2022) – 10.1002/mma.8288
- Anco, S. C., Gandarias, M. L. & Recio, E. Conservation Laws, Symmetries, and Line Soliton Solutions of Generalized KP and Boussinesq Equations with p-Power Nonlinearities in Two Dimensions. Theoretical and Mathematical Physics vol. 197 1393–1411 (2018) – 10.1134/s004057791810001x
- Chen, C. & Jiang, Y.-L. Lie Group Analysis, Exact Solutions and New Conservation Laws for Combined KdV–mKdV Equation. Differential Equations and Dynamical Systems vol. 28 827–840 (2017) – 10.1007/s12591-017-0351-0
- Ak, T., Karakoc, S. B. G. & Biswas, A. Application of Petrov-Galerkin finite element method to shallow water waves model: Modified Korteweg-de Vries equation. Scientia Iranica vol. 24 1148–1159 (2017) – 10.24200/sci.2017.4096
- Gazi Karakoc, S. B. A Quartic Subdomain Finite Element Method for the Modified KdV Equation. Statistics, Optimization & Information Computing vol. 6 (2018) – 10.19139/soic.v6i4.485
- Gazi Karakoc, S. B. Numerical solutions of the modified KdV Equation with collocation method. Malaya Journal of Matematik vol. 6 835–842 (2018) – 10.26637/mjm0604/0020
- Ak, T., Karakoc, S. B. G. & Biswas, A. A New Approach for Numerical Solution of Modified Korteweg-de Vries Equation. Iranian Journal of Science and Technology, Transactions A: Science vol. 41 1109–1121 (2017) – 10.1007/s40995-017-0238-5
- Mohammadizadeh, F., Rashidi, S. & Hejazi, S. R. Space–time fractional Klein-Gordon equation: Symmetry analysis, conservation laws and numerical approximations. Mathematics and Computers in Simulation vol. 188 476–497 (2021) – 10.1016/j.matcom.2021.04.015
- Satsuma, J. & Hirota, R. A Coupled KdV Equation is One Case of the Four-Reduction of the KP Hierarchy. Journal of the Physical Society of Japan vol. 51 3390–3397 (1982) – 10.1143/jpsj.51.3390
- Karakoc, S. B. G., Saha, A. & Sucu, D. A novel implementation of Petrov-Galerkin method to shallow water solitary wave pattern and superperiodic traveling wave and its multistability: Generalized Korteweg-de Vries equation. Chinese Journal of Physics vol. 68 605–617 (2020) – 10.1016/j.cjph.2020.10.010
- Zhang, Y., Han, Z. & Tam, H.-W. An integrable hierarchy and Darboux transformations, bilinear Bäcklund transformations of a reduced equation. Applied Mathematics and Computation vol. 219 5837–5848 (2013) – 10.1016/j.amc.2012.11.086
- Ablowitz, M. A. & Clarkson, P. A. Solitons, Nonlinear Evolution Equations and Inverse Scattering. (1991) doi:10.1017/cbo9780511623998 – 10.1017/cbo9780511623998
- Tam, H.-W. & Zhang, Y. An integrable system and associated integrable models as well as Hamiltonian structures. Journal of Mathematical Physics vol. 53 (2012) – 10.1063/1.4752721
- Mikhailov, A. V. The reduction problem and the inverse scattering method. Physica D: Nonlinear Phenomena vol. 3 73–117 (1981) – 10.1016/0167-2789(81)90120-2
- Zhang, H.-Y. & Zhang, Y.-F. Spectral analysis and long-time asymptotics of complex mKdV equation. Journal of Mathematical Physics vol. 63 (2022) – 10.1063/5.0073909
- Wang, H. & Zhang, Y. Two Nonisospectral Integrable Hierarchies and its Integrable Coupling. International Journal of Theoretical Physics vol. 59 2529–2539 (2020) – 10.1007/s10773-020-04519-9
- Gao, X. N., Lou, S. Y. & Tang, X. Y. Bosonization, singularity analysis, nonlocal symmetry reductions and exact solutions of supersymmetric KdV equation. Journal of High Energy Physics vol. 2013 (2013) – 10.1007/jhep05(2013)029
- Hu, X.-R., Lou, S.-Y. & Chen, Y. Explicit solutions from eigenfunction symmetry of the Korteweg–de Vries equation. Physical Review E vol. 85 (2012) – 10.1103/physreve.85.056607
- Lou, S. Y., Hu, X. & Chen, Y. Nonlocal symmetries related to Bäcklund transformation and their applications. Journal of Physics A: Mathematical and Theoretical vol. 45 155209 (2012) – 10.1088/1751-8113/45/15/155209
- Lou, S.-Y. & Hu, X.-B. Infinitely many Lax pairs and symmetry constraints of the KP equation. Journal of Mathematical Physics vol. 38 6401–6427 (1997) – 10.1063/1.532219
- Gazizov, R. K., Ibragimov, N. H. & Lukashchuk, S. Yu. Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations. Communications in Nonlinear Science and Numerical Simulation vol. 23 153–163 (2015) – 10.1016/j.cnsns.2014.11.010
- Chen, C., Zhou, J., Zhao, S. & Feng, B. Integrable Coupling of Expanded Isospectral and Non-Isospectral Dirac Hierarchy and Its Reduction. Symmetry vol. 14 2489 (2022) – 10.3390/sym14122489