Authors

Dipendu Halder, Ronny Thomale, Saurabh Basu

Abstract

We examine a non-Hermitian (NH) tight-binding system comprising of two orbitals per unit cell and their electrical circuit analogues. We distinguish the PT-symmetric and non-PT symmetric cases characterised by non-reciprocal nearest neighbour couplings and onsite gain/loss terms, respectively. The localisation of the edge modes or the emergence of the topological properties are determined via the maximum inverse participation ratio, which has distinct dependencies on the parameters that define the Hamiltonian. None of the above scenarios exhibits the non-Hermitian skin effect. We investigate the boundary modes corresponding to the topological phases in a suitably designed electrical circuit by analyzing the two-port impedance and retrieve the admittance band structure of the circuit via imposing periodic boundary conditions. The obtained results are benchmarked against the Hermitian version of the two-orbital model to compare and discriminate against those obtained for the NH variants.

Citation

  • Journal: Physical Review B
  • Year: 2024
  • Volume: 109
  • Issue: 11
  • Pages:
  • Publisher: American Physical Society (APS)
  • DOI: 10.1103/physrevb.109.115407

BibTeX

@article{Halder_2024,
  title={{Circuit realization of a two-orbital non-Hermitian tight-binding chain}},
  volume={109},
  ISSN={2469-9969},
  DOI={10.1103/physrevb.109.115407},
  number={11},
  journal={Physical Review B},
  publisher={American Physical Society (APS)},
  author={Halder, Dipendu and Thomale, Ronny and Basu, Saurabh},
  year={2024}
}

Download the bib file

References

  • Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in Polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979) – 10.1103/physrevlett.42.1698
  • Klitzing, K. v., Dorda, G. & Pepper, M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Phys. Rev. Lett. 45, 494–497 (1980) – 10.1103/physrevlett.45.494
  • Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010) – 10.1103/revmodphys.82.3045
  • Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011) – 10.1103/revmodphys.83.1057
  • Bansil, A., Lin, H. & Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 88, (2016) – 10.1103/revmodphys.88.021004
  • Chiu, C.-K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, (2016) – 10.1103/revmodphys.88.035005
  • Ryu, S., Schnyder, A. P., Furusaki, A. & Ludwig, A. W. W. Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010) – 10.1088/1367-2630/12/6/065010
  • Bender, C. M. & Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians HavingPTSymmetry. Phys. Rev. Lett. 80, 5243–5246 (1998) – 10.1103/physrevlett.80.5243
  • Lee, T. E. Anomalous Edge State in a Non-Hermitian Lattice. Phys. Rev. Lett. 116, (2016) – 10.1103/physrevlett.116.133903
  • Shen, H., Zhen, B. & Fu, L. Topological Band Theory for Non-Hermitian Hamiltonians. Phys. Rev. Lett. 120, (2018) – 10.1103/physrevlett.120.146402
  • Lieu, S. Topological phases in the non-Hermitian Su-Schrieffer-Heeger model. Phys. Rev. B 97, (2018) – 10.1103/physrevb.97.045106
  • Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and Topology in Non-Hermitian Physics. Phys. Rev. X 9, (2019) – 10.1103/physrevx.9.041015
  • Yao, S. & Wang, Z. Edge States and Topological Invariants of Non-Hermitian Systems. Phys. Rev. Lett. 121, (2018) – 10.1103/physrevlett.121.086803
  • Kunst, F. K., Edvardsson, E., Budich, J. C. & Bergholtz, E. J. Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems. Phys. Rev. Lett. 121, (2018) – 10.1103/physrevlett.121.026808
  • Martinez Alvarez, V. M., Barrios Vargas, J. E. & Foa Torres, L. E. F. Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points. Phys. Rev. B 97, (2018) – 10.1103/physrevb.97.121401
  • Lee, C. H. & Thomale, R. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B 99, (2019) – 10.1103/physrevb.99.201103
  • Borgnia, D. S., Kruchkov, A. J. & Slager, R.-J. Non-Hermitian Boundary Modes and Topology. Phys. Rev. Lett. 124, (2020) – 10.1103/physrevlett.124.056802
  • Yuce, C. Non-Hermitian anomalous skin effect. Physics Letters A 384, 126094 (2020) – 10.1016/j.physleta.2019.126094
  • Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological Origin of Non-Hermitian Skin Effects. Phys. Rev. Lett. 124, (2020) – 10.1103/physrevlett.124.086801
  • Kawabata, K., Sato, M. & Shiozaki, K. Higher-order non-Hermitian skin effect. Phys. Rev. B 102, (2020) – 10.1103/physrevb.102.205118
  • Yokomizo, K. & Murakami, S. Non-Bloch Band Theory of Non-Hermitian Systems. Phys. Rev. Lett. 123, (2019) – 10.1103/physrevlett.123.066404
  • Heiss, W. D. The physics of exceptional points. J. Phys. A: Math. Theor. 45, 444016 (2012) – 10.1088/1751-8113/45/44/444016
  • Leykam, D., Bliokh, K. Y., Huang, C., Chong, Y. D. & Nori, F. Edge Modes, Degeneracies, and Topological Numbers in Non-Hermitian Systems. Phys. Rev. Lett. 118, (2017) – 10.1103/physrevlett.118.040401
  • Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nature Phys 6, 192–195 (2010) – 10.1038/nphys1515
  • Eichelkraut, T. et al. Mobility transition from ballistic to diffusive transport in non-Hermitian lattices. Nat Commun 4, (2013) – 10.1038/ncomms3533
  • Albert, V. V., Glazman, L. I. & Jiang, L. Topological Properties of Linear Circuit Lattices. Phys. Rev. Lett. 114, (2015) – 10.1103/physrevlett.114.173902
  • Ningyuan, J., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time- and Site-Resolved Dynamics in a Topological Circuit. Phys. Rev. X 5, (2015) – 10.1103/physrevx.5.021031
  • Lee, C. H. et al. Topolectrical Circuits. Commun Phys 1, (2018) – 10.1038/s42005-018-0035-2
  • Wang, A., Meng, Z. & Chen, C. Q. Non-Hermitian topology in static mechanical metamaterials. Sci. Adv. 9, (2023) – 10.1126/sciadv.adf7299
  • Fleury, R., Sounas, D. & Alù, A. An invisible acoustic sensor based on parity-time symmetry. Nat Commun 6, (2015) – 10.1038/ncomms6905
  • Gu, Z. et al. Controlling Sound in Non-Hermitian Acoustic Systems. Phys. Rev. Applied 16, (2021) – 10.1103/physrevapplied.16.057001
  • Helbig, T. et al. Band structure engineering and reconstruction in electric circuit networks. Phys. Rev. B 99, (2019) – 10.1103/physrevb.99.161114
  • Ezawa, M. Braiding of Majorana-like corner states in electric circuits and its non-Hermitian generalization. Phys. Rev. B 100, (2019) – 10.1103/physrevb.100.045407
  • Li, L., Lee, C. H., Mu, S. & Gong, J. Critical non-Hermitian skin effect. Nat Commun 11, (2020) – 10.1038/s41467-020-18917-4
  • Hofmann, T. et al. Reciprocal skin effect and its realization in a topolectrical circuit. Phys. Rev. Research 2, (2020) – 10.1103/physrevresearch.2.023265
  • Helbig, T. et al. Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020) – 10.1038/s41567-020-0922-9
  • Lang, L.-J., Weng, Y., Zhang, Y., Cheng, E. & Liang, Q. Dynamical robustness of topological end states in nonreciprocal Su-Schrieffer-Heeger models with open boundary conditions. Phys. Rev. B 103, (2021) – 10.1103/physrevb.103.014302
  • Dong, J., Juričić, V. & Roy, B. Topolectric circuits: Theory and construction. Phys. Rev. Research 3, (2021) – 10.1103/physrevresearch.3.023056
  • Rafi-Ul-Islam, S. M., Siu, Z. B., Sahin, H., Lee, C. H. & Jalil, M. B. A. Unconventional skin modes in generalized topolectrical circuits with multiple asymmetric couplings. Phys. Rev. Research 4, (2022) – 10.1103/physrevresearch.4.043108
  • Zhang, H., Chen, T., Li, L., Lee, C. H. & Zhang, X. Electrical circuit realization of topological switching for the non-Hermitian skin effect. Phys. Rev. B 107, (2023) – 10.1103/physrevb.107.085426
  • Ganguly, S. & Maiti, S. K. Electrical analogue of one-dimensional and quasi-one-dimensional Aubry–André–Harper lattices. Sci Rep 13, (2023) – 10.1038/s41598-023-40690-9
  • Wu, F. Y. Theory of resistor networks: the two-point resistance. J. Phys. A: Math. Gen. 37, 6653–6673 (2004) – 10.1088/0305-4470/37/26/004
  • Kramer, B. & MacKinnon, A. Localization: theory and experiment. Rep. Prog. Phys. 56, 1469–1564 (1993) – 10.1088/0034-4885/56/12/001
  • Stegmaier, A. et al. Topological Defect Engineering andPT</mml:math Symmetry in Non-Hermitian Electrical Circuits. Phys. Rev. Lett. 126, (2021) -- [10.1103/physrevlett.126.215302](https://doi.org/10.1103/physrevlett.126.215302)
  • Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. Journal of Mathematical Physics 43, 205–214 (2002) – 10.1063/1.1418246