Canonical Equations of Hamilton with Symmetry and Their Applications
Authors
Guo Liang, Xiangwei Chen, Zhanmei Ren, Qi Guo
Abstract
Two systems of mathematical physics are defined by us, which are the first-order differential system (FODS) and the second-order differential system (SODS). Basing on the conventional Legendre transformation, we obtain a new kind of canonical equations of Hamilton (CEH) with some kind of symmetry. We show that the FODS can only be expressed by the new CEH, but do not by the conventional CEH, while the SODS can be done by both the new and the conventional CEHs, on basis of the same conventional Legendre transformation. As an example, we prove that the nonlinear Schrödinger equation can be expressed with the new CEH in a consistent way. Based on the new CEH, the approximate soliton solution of the nonlocal nonlinear Schrödinger equation is obtained, and the soliton stability is analysed analytically as well. Furthermore, because the symmetry of a system is closely connected with certain conservation theorem of the system, the new CEH may be useful in some complicated systems when the symmetry considerations are used.
Citation
- Journal: Symmetry
- Year: 2024
- Volume: 16
- Issue: 3
- Pages: 305
- Publisher: MDPI AG
- DOI: 10.3390/sym16030305
BibTeX
@article{Liang_2024,
title={{Canonical Equations of Hamilton with Symmetry and Their Applications}},
volume={16},
ISSN={2073-8994},
DOI={10.3390/sym16030305},
number={3},
journal={Symmetry},
publisher={MDPI AG},
author={Liang, Guo and Chen, Xiangwei and Ren, Zhanmei and Guo, Qi},
year={2024},
pages={305}
}
References
- Gross, D. J. The role of symmetry in fundamental physics. Proceedings of the National Academy of Sciences vol. 93 14256–14259 (1996) – 10.1073/pnas.93.25.14256
- Nore, C., Brachet, M. E. & Fauve, S. Numerical study of hydrodynamics using the nonlinear Schrödinger equation. Physica D: Nonlinear Phenomena vol. 65 154–162 (1993) – 10.1016/0167-2789(93)90011-o
- Hasegawa, A. & Kodama, Y. Solitons in Optical Communications. (1995) doi:10.1093/oso/9780198565079.001.0001 – 10.1093/oso/9780198565079.001.0001
- Bisyarin, M. A., Enflo, B., Hedberg, C. M. & Kari, L. Weak-Nonlinear Acoustic Pulse Dynamics In A Waveguide Channel With Longitudinal Inhomogeneity. AIP Conference Proceedings vol. 1022 38–41 (2008) – 10.1063/1.2956239
- Seaman, B. T., Carr, L. D. & Holland, M. J. Nonlinear band structure in Bose-Einstein condensates: Nonlinear Schrödinger equation with a Kronig-Penney potential. Physical Review A vol. 71 (2005) – 10.1103/physreva.71.033622
- Anderson, D. Variational approach to nonlinear pulse propagation in optical fibers. Physical Review A vol. 27 3135–3145 (1983) – 10.1103/physreva.27.3135
- Chen, X., Zhang, G., Zeng, H., Guo, Q. & She, W. Advances in Nonlinear Optics. (DE GRUYTER, 2015). doi:10.1515/9783110304497 – 10.1515/9783110304497
- Snyder, A. W. & Mitchell, D. J. Accessible Solitons. Science vol. 276 1538–1541 (1997) – 10.1126/science.276.5318.1538
- Krolikowski, W., Bang, O., Rasmussen, J. J. & Wyller, J. Modulational instability in nonlocal nonlinear Kerr media. Physical Review E vol. 64 (2001) – 10.1103/physreve.64.016612
- Nematicons. (2012) doi:10.1002/9781118414637 – 10.1002/9781118414637
- Seghete, V., Menyuk, C. R. & Marks, B. S. Solitons in the midst of chaos. Physical Review A vol. 76 (2007) – 10.1103/physreva.76.043803
- Picozzi, A. & Garnier, J. Incoherent Soliton Turbulence in Nonlocal Nonlinear Media. Physical Review Letters vol. 107 (2011) – 10.1103/physrevlett.107.233901
- Lashkin, V. M., Yakimenko, A. I. & Prikhodko, O. O. Two-dimensional nonlocal multisolitons. Physics Letters A vol. 366 422–427 (2007) – 10.1016/j.physleta.2007.02.042
- Petroski, M. M., Petrović, M. S. & Belić, M. R. Quasi-stable propagation of vortices and soliton clusters in saturable Kerr media with square-root nonlinearity. Optics Communications vol. 279 196–202 (2007) – 10.1016/j.optcom.2007.07.006
- Vakhitov, N. G. & Kolokolov, A. A. Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophysics and Quantum Electronics vol. 16 783–789 (1973) – 10.1007/bf01031343
- Desaix, M., Anderson, D. & Lisak, M. Variational approach to collapse of optical pulses. Journal of the Optical Society of America B vol. 8 2082 (1991) – 10.1364/josab.8.002082
- Bergé, L. Wave collapse in physics: principles and applications to light and plasma waves. Physics Reports vol. 303 259–370 (1998) – 10.1016/s0370-1573(97)00092-6
- Moll, K. D., Gaeta, A. L. & Fibich, G. Self-Similar Optical Wave Collapse: Observation of the Townes Profile. Physical Review Letters vol. 90 (2003) – 10.1103/physrevlett.90.203902
- Sun, C., Barsi, C. & Fleischer, J. W. Peakon profiles and collapse-bounce cycles in self-focusing spatial beams. Optics Express vol. 16 20676 (2008) – 10.1364/oe.16.020676
- Bang, O., Krolikowski, W., Wyller, J. & Rasmussen, J. J. Collapse arrest and soliton stabilization in nonlocal nonlinear media. Physical Review E vol. 66 (2002) – 10.1103/physreve.66.046619