Canonical Equations of Hamilton with Symmetry and Their Applications
Authors
Guo Liang, Xiangwei Chen, Zhanmei Ren, Qi Guo
Abstract
Citation
- Journal: Symmetry
- Year: 2024
- Volume: 16
- Issue: 3
- Pages: 305
- Publisher: MDPI AG
- DOI: 10.3390/sym16030305
BibTeX
@article{Liang_2024,
title={{Canonical Equations of Hamilton with Symmetry and Their Applications}},
volume={16},
ISSN={2073-8994},
DOI={10.3390/sym16030305},
number={3},
journal={Symmetry},
publisher={MDPI AG},
author={Liang, Guo and Chen, Xiangwei and Ren, Zhanmei and Guo, Qi},
year={2024},
pages={305}
}
References
- Gross, D. J. The role of symmetry in fundamental physics. Proceedings of the National Academy of Sciences vol. 93 14256–14259 (1996) – 10.1073/pnas.93.25.14256
- Nore, C., Brachet, M. E. & Fauve, S. Numerical study of hydrodynamics using the nonlinear Schrödinger equation. Physica D: Nonlinear Phenomena vol. 65 154–162 (1993) – 10.1016/0167-2789(93)90011-o
- Hasegawa, A. & Kodama, Y. Solitons in Optical Communications. (1995) doi:10.1093/oso/9780198565079.001.0001 – 10.1093/oso/9780198565079.001.0001
- Bisyarin, M. A., Enflo, B., Hedberg, C. M. & Kari, L. Weak-Nonlinear Acoustic Pulse Dynamics In A Waveguide Channel With Longitudinal Inhomogeneity. AIP Conference Proceedings vol. 1022 38–41 (2008) – 10.1063/1.2956239
- Seaman, B. T., Carr, L. D. & Holland, M. J. Nonlinear band structure in Bose-Einstein condensates: Nonlinear Schrödinger equation with a Kronig-Penney potential. Physical Review A vol. 71 (2005) – 10.1103/physreva.71.033622
- Anderson, D. Variational approach to nonlinear pulse propagation in optical fibers. Physical Review A vol. 27 3135–3145 (1983) – 10.1103/physreva.27.3135
- Chen, X., Zhang, G., Zeng, H., Guo, Q. & She, W. Advances in Nonlinear Optics. (DE GRUYTER, 2015). doi:10.1515/9783110304497 – 10.1515/9783110304497
- Snyder, A. W. & Mitchell, D. J. Accessible Solitons. Science vol. 276 1538–1541 (1997) – 10.1126/science.276.5318.1538
- Krolikowski, W., Bang, O., Rasmussen, J. J. & Wyller, J. Modulational instability in nonlocal nonlinear Kerr media. Physical Review E vol. 64 (2001) – 10.1103/physreve.64.016612
- Nematicons. (2012) doi:10.1002/9781118414637 – 10.1002/9781118414637
- Seghete, V., Menyuk, C. R. & Marks, B. S. Solitons in the midst of chaos. Physical Review A vol. 76 (2007) – 10.1103/physreva.76.043803
- Picozzi, A. & Garnier, J. Incoherent Soliton Turbulence in Nonlocal Nonlinear Media. Physical Review Letters vol. 107 (2011) – 10.1103/physrevlett.107.233901
- Lashkin, V. M., Yakimenko, A. I. & Prikhodko, O. O. Two-dimensional nonlocal multisolitons. Physics Letters A vol. 366 422–427 (2007) – 10.1016/j.physleta.2007.02.042
- Petroski, M. M., Petrović, M. S. & Belić, M. R. Quasi-stable propagation of vortices and soliton clusters in saturable Kerr media with square-root nonlinearity. Optics Communications vol. 279 196–202 (2007) – 10.1016/j.optcom.2007.07.006
- Vakhitov, N. G. & Kolokolov, A. A. Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophysics and Quantum Electronics vol. 16 783–789 (1973) – 10.1007/bf01031343
- Desaix, M., Anderson, D. & Lisak, M. Variational approach to collapse of optical pulses. Journal of the Optical Society of America B vol. 8 2082 (1991) – 10.1364/josab.8.002082
- Bergé, L. Wave collapse in physics: principles and applications to light and plasma waves. Physics Reports vol. 303 259–370 (1998) – 10.1016/s0370-1573(97)00092-6
- Moll, K. D., Gaeta, A. L. & Fibich, G. Self-Similar Optical Wave Collapse: Observation of the Townes Profile. Physical Review Letters vol. 90 (2003) – 10.1103/physrevlett.90.203902
- Sun, C., Barsi, C. & Fleischer, J. W. Peakon profiles and collapse-bounce cycles in self-focusing spatial beams. Optics Express vol. 16 20676 (2008) – 10.1364/oe.16.020676
- Bang, O., Krolikowski, W., Wyller, J. & Rasmussen, J. J. Collapse arrest and soliton stabilization in nonlocal nonlinear media. Physical Review E vol. 66 (2002) – 10.1103/physreve.66.046619