Authors

Malida O. Hecht, Antonio J. Cobarrubia, Kyle M. Sundqvist

Abstract

Classical microwave circuit theory is incapable of representing some phenomena at the quantum level. To include quantum statistical effects, various theoretical treatments can be employed. Quantum input-output network (QION) theory is one such treatment. Another formalism, called SLH theory, incorporates scattering matrices (S), coupling vectors (L), and system Hamiltonians (H). These theoretical treatments require a reformulation of classical microwave theory. To make these topics comprehensible to an electrical engineer, we demonstrate some underpinnings of microwave quantum optics in terms of microwave engineering. For instance, we equate traveling-wave phasors in a transmission line (\\( V_0^+ \\)) directly to bosonic field operators. Furthermore, we extend QION to include a state-space representation and a transfer function for a single port quantum network. This serves as a case study to highlight how microwave methodologies can be applied in open quantum systems. Although the same conclusion could be found from a full SLH theory treatment, our method was derived directly from first principles of QION.

Citation

  • Journal: IEEE Transactions on Quantum Engineering
  • Year: 2021
  • Volume: 2
  • Issue:
  • Pages: 1–8
  • Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  • DOI: 10.1109/tqe.2021.3054041

BibTeX

@article{Hecht_2021,
  title={{An Engineer’s Brief Introduction to Microwave Quantum Optics and a Single-Port State-Space Representation}},
  volume={2},
  ISSN={2689-1808},
  DOI={10.1109/tqe.2021.3054041},
  journal={IEEE Transactions on Quantum Engineering},
  publisher={Institute of Electrical and Electronics Engineers (IEEE)},
  author={Hecht, Malida O. and Cobarrubia, Antonio J. and Sundqvist, Kyle M.},
  year={2021},
  pages={1--8}
}

Download the bib file

References

  • Yanagisawa, M. & Kimura, H. Transfer function approach to quantum control- part I: dynamics of quantum feedback systems. IEEE Trans. Automat. Contr. 48, 2107–2120 (2003) – 10.1109/tac.2003.820063
  • Grivopoulos, S., Nurdin, H. I. & Petersen, I. R. On transfer function realizations for Linear Quantum Stochastic Systems. 2016 IEEE 55th Conference on Decision and Control (CDC) 4552–4558 (2016) doi:10.1109/cdc.2016.7798962 – 10.1109/cdc.2016.7798962
  • Gough, J. E., James, M. R. & Nurdin, H. I. Squeezing components in linear quantum feedback networks. Phys. Rev. A 81, (2010) – 10.1103/physreva.81.023804
  • Williams, R. L., II & Lawrence, D. A. Linear State‐Space Control Systems. (2007) doi:10.1002/9780470117873 – 10.1002/9780470117873
  • ogata, Modern Control Engineering (2010)
  • devoret, Quantum Fluctuations in Electrical Circuits. (351)
  • gough, On realization theory of quantum linear systems. (2013)
  • James, M. R. & Gough, J. E. Quantum Dissipative Systems and Feedback Control Design by Interconnection. IEEE Trans. Automat. Contr. 55, 1806–1821 (2010) – 10.1109/tac.2010.2046067
  • james, H-infinity control of linear quantum stochastic systems. (2007)
  • Nurdin, H. I., James, M. R. & Petersen, I. R. Coherent quantum LQG control. Automatica 45, 1837–1846 (2009) – 10.1016/j.automatica.2009.04.018
  • Gough, J. & James, M. R. Quantum Feedback Networks: Hamiltonian Formulation. Commun. Math. Phys. 287, 1109–1132 (2008) – 10.1007/s00220-008-0698-8
  • Yanagisawa, M. & Kimura, H. Transfer function approach to quantum control- part II: control concepts and applications. IEEE Trans. Automat. Contr. 48, 2121–2132 (2003) – 10.1109/tac.2003.820065
  • kockum, Measurement back-action and photon detection in microwave quantum optics. (2012)
  • Bouten, L. & Gough, J. E. Asymptotic equivalence of quantum stochastic models. Journal of Mathematical Physics 60, (2019) – 10.1063/1.5046189
  • Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Applied Physics Reviews 6, (2019) – 10.1063/1.5089550
  • Gu, X., Kockum, A. F., Miranowicz, A., Liu, Y. & Nori, F. Microwave photonics with superconducting quantum circuits. Physics Reports 718–719, 1–102 (2017) – 10.1016/j.physrep.2017.10.002
  • louisell, Coupled Mode and Parametric Electronics (1960)
  • Girvin, S. M. Circuit QED: superconducting qubits coupled to microwave photons. Quantum Machines: Measurement and Control of Engineered Quantum Systems 113–256 (2014) doi:10.1093/acprof:oso/9780199681181.003.0003 – 10.1093/acprof:oso/9780199681181.003.0003
  • Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010) – 10.1103/revmodphys.82.1155
  • louisell, Quantum Statistical Properties of Radiation (1990)
  • pozar, Microwave Engineering (2012)
  • Tabak, G. & Mabuchi, H. Trapped modes in linear quantum stochastic networks with delays. EPJ Quantum Technol. 3, (2016) – 10.1140/epjqt/s40507-016-0041-9
  • Combes, J., Kerckhoff, J. & Sarovar, M. The SLH framework for modeling quantum input-output networks. Advances in Physics: X 2, 784–888 (2017) – 10.1080/23746149.2017.1343097
  • Abdo, B., Kamal, A. & Devoret, M. Nondegenerate three-wave mixing with the Josephson ring modulator. Phys. Rev. B 87, (2013) – 10.1103/physrevb.87.014508
  • Devoret, M. H. & Schoelkopf, R. J. Superconducting Circuits for Quantum Information: An Outlook. Science 339, 1169–1174 (2013) – 10.1126/science.1231930
  • Gardiner, C. W., Parkins, A. S. & Zoller, P. Wave-function quantum stochastic differential equations and quantum-jump simulation methods. Phys. Rev. A 46, 4363–4381 (1992) – 10.1103/physreva.46.4363
  • Mabuchi, H. Coherent-feedback quantum control with a dynamic compensator. Phys. Rev. A 78, (2008) – 10.1103/physreva.78.032323
  • Gardiner, C. W. & Collett, M. J. Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761–3774 (1985) – 10.1103/physreva.31.3761
  • Yurke, B. & Denker, J. S. Quantum network theory. Phys. Rev. A 29, 1419–1437 (1984) – 10.1103/physreva.29.1419
  • gardiner, Quantum Noise (2004)
  • devoret, Quantum Machines Measurement and Control of Engineered Quantum Systems (0)
  • Quantum Squeezing. Springer Series on Atomic, Optical, and Plasma Physics (Springer Berlin Heidelberg, 2004). doi:10.1007/978-3-662-09645-1 – 10.1007/978-3-662-09645-1
  • Haus, H. A. From classical to quantum noise. J. Opt. Soc. Am. B 12, 2019 (1995) – 10.1364/josab.12.002019
  • ulaby, Fundamentals of Applied Electromagnetics (2015)
  • castellanos-beltran, Development of a Josephson parametric amplifier for the preparation and detection of nonclassical states of microwave fields. (2010)
  • raju, Electromagnetic Field Theory and Transmission Lines (2006)
  • Zhang, G. & James, M. R. Direct and Indirect Couplings in Coherent Feedback Control of Linear Quantum Systems. IEEE Trans. Automat. Contr. 56, 1535–1550 (2011) – 10.1109/tac.2010.2096010
  • CARRUTHERS, P. & NIETO, M. M. Phase and Angle Variables in Quantum Mechanics. Rev. Mod. Phys. 40, 411–440 (1968) – 10.1103/revmodphys.40.411
  • Yamamoto, N., Nurdin, H. I. & James, M. R. Quantum state transfer for multi-input linear quantum systems. 2016 IEEE 55th Conference on Decision and Control (CDC) 2535–2538 (2016) doi:10.1109/cdc.2016.7798643 – 10.1109/cdc.2016.7798643
  • Zagoskin, A. M. Quantum Engineering. (2011) doi:10.1017/cbo9780511844157 – 10.1017/cbo9780511844157
  • Loudon, R. The Quantum Theory of Light. (2000) doi:10.1093/oso/9780198501770.001.0001 – 10.1093/oso/9780198501770.001.0001
  • Zhang, G. & James, M. R. On the Response of Quantum Linear Systems to Single Photon Input Fields. IEEE Trans. Automat. Contr. 58, 1221–1235 (2013) – 10.1109/tac.2012.2230816
  • DOI not foun – 10.1016/s0079-6638(08)-70532-8