Adiabatic quantum computation along quasienergies
Authors
Abstract
The parametric deformations of quasienergies and eigenvectors of unitary operators are applied to the design of quantum adiabatic algorithms. The conventional, standard adiabatic quantum computation proceeds along eigenenergies of parameter-dependent Hamiltonians. By contrast, discrete adiabatic computation utilizes adiabatic passage along the quasienergies of parameter-dependent unitary operators. For example, such computation can be realized by a concatenation of parameterized quantum circuits, with an adiabatic though inevitably discrete change of the parameter. A design principle of adiabatic passage along quasienergy was recently proposed: Cheon’s quasienergy and eigenspace anholonomies on unitary operators is available to realize anholonomic adiabatic algorithms [A. Tanaka and M. Miyamoto, Phys. Rev. Lett. 98, 160407 (2007)], which compose a nontrivial family of discrete adiabatic algorithms. It is straightforward to port a standard adiabatic algorithm to an anholonomic adiabatic one, except an introduction of a parameter |v>, which is available to adjust the gaps of the quasienergies to control the running time steps. In Grover’s database search problem, the costs to prepare |v> for the qualitatively different (i.e., power or exponential) running time steps are shown to be qualitatively different.
Citation
- Journal: Physical Review A
- Year: 2010
- Volume: 81
- Issue: 2
- Pages:
- Publisher: American Physical Society (APS)
- DOI: 10.1103/physreva.81.022320
BibTeX
@article{Tanaka_2010,
title={{Adiabatic quantum computation along quasienergies}},
volume={81},
ISSN={1094-1622},
DOI={10.1103/physreva.81.022320},
number={2},
journal={Physical Review A},
publisher={American Physical Society (APS)},
author={Tanaka, Atushi and Nemoto, Kae},
year={2010}
}
References
- A. Messiah, Quantum Mechanics (1999)
- Aharonov, D. et al. Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation. SIAM J. Comput. 37, 166–194 (2007) – 10.1137/s0097539705447323
- Farhi, E. et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292, 472–475 (2001) – 10.1126/science.1057726
- Schützhold, R. & Schaller, G. Adiabatic quantum algorithms as quantum phase transitions: First versus second order. Phys. Rev. A 74, (2006) – 10.1103/physreva.74.060304
- Žnidarič, M. Scaling of the running time of the quantum adiabatic algorithm for propositional satisfiability. Phys. Rev. A 71, (2005) – 10.1103/physreva.71.062305
- Žnidarič, M. & Horvat, M. Exponential complexity of an adiabatic algorithm for an NP-complete problem. Phys. Rev. A 73, (2006) – 10.1103/physreva.73.022329
- FARHI, E., GOLDSTONE, J., GUTMANN, S. & NAGAJ, D. HOW TO MAKE THE QUANTUM ADIABATIC ALGORITHM FAIL. Int. J. Quantum Inform. 06, 503–516 (2008) – 10.1142/s021974990800358x
- Hogg, T. Adiabatic quantum computing for random satisfiability problems. Phys. Rev. A 67, (2003) – 10.1103/physreva.67.022314
- Steffen, M., van Dam, W., Hogg, T., Breyta, G. & Chuang, I. Experimental Implementation of an Adiabatic Quantum Optimization Algorithm. Phys. Rev. Lett. 90, (2003) – 10.1103/physrevlett.90.067903
- Daems, D. & Guérin, S. Adiabatic Quantum Search Scheme With Atoms In a Cavity Driven by Lasers. Phys. Rev. Lett. 99, (2007) – 10.1103/physrevlett.99.170503
- Y. B. Zel’dovich, Sov. Phys. JETP (1967)
- Tanaka, A. & Miyamoto, M. Quasienergy Anholonomy and its Application to Adiabatic Quantum State Manipulation. Phys. Rev. Lett. 98, (2007) – 10.1103/physrevlett.98.160407
- Cheon, T. Double spiral energy surface in one-dimensional quantum mechanics of generalized pointlike potentials. Physics Letters A 248, 285–289 (1998) – 10.1016/s0375-9601(98)00725-7
- Miyamoto, M. & Tanaka, A. Cheon’s anholonomies in Floquet operators. Phys. Rev. A 76, (2007) – 10.1103/physreva.76.042115
- Cheon, T. & Tanaka, A. New anatomy of quantum holonomy. Europhys. Lett. 85, 20001 (2009) – 10.1209/0295-5075/85/20001
- Grover, L. K. Quantum Mechanics Helps in Searching for a Needle in a Haystack. Phys. Rev. Lett. 79, 325–328 (1997) – 10.1103/physrevlett.79.325
- Berry, M. V., Balazs, N. L., Tabor, M. & Voros, A. Quantum maps. Annals of Physics 122, 26–63 (1979) – 10.1016/0003-4916(79)90296-3
- Lloyd, S. Universal Quantum Simulators. Science 273, 1073–1078 (1996) – 10.1126/science.273.5278.1073
- Nakamura, H. Nonadiabatic Transition. (2002) doi:10.1142/4783 – 10.1142/9789812778406
- Breuer, H. P. & Holthaus, M. Adiabatic processes in the ionization of highly excited hydrogen atoms. Z Phys D - Atoms, Molecules and Clusters 11, 1–14 (1989) – 10.1007/bf01436579
- Roland, J. & Cerf, N. J. Quantum search by local adiabatic evolution. Phys. Rev. A 65, (2002) – 10.1103/physreva.65.042308
- Gutzwiller, M. C. Chaos in Classical and Quantum Mechanics. Interdisciplinary Applied Mathematics (Springer New York, 1990). doi:10.1007/978-1-4612-0983-6 – 10.1007/978-1-4612-0983-6
- Lorenz, E. N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 20, 130–141 (1963) – 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
- Hénon, M. A two-dimensional mapping with a strange attractor. Commun.Math. Phys. 50, 69–77 (1976) – 10.1007/bf01608556
- M. Tabor, Chaos and Integrability in Nonlinear Dynamics: An Introduction (1989)