Authors

Bo Fan, Qingwei Hu, Jianxiang Wang, Yi Zhao, Hangyu Zhou, Lifan Sun

Abstract

The operational performances of the conventional permanent magnet synchronous motor drive systems are affected by complex work conditions, sudden load changes, and external disturbances. For the nonlinear control of a permanent magnet synchronous motor, a passive control method based on ADRC and PCHD with disturbance observation is proposed. The disturbance of the current loop is estimated and compensated by the disturbance observer, and the feedback control law is obtained by interconnection and damping configuration, thus the port-controlled Hamiltonian with dissipation based on perturbation observation is designed. With the introduction of active disturbance rejection control, the system has stronger robustness to external disturbance. The experimental results show that compared with the PI control and ADRC method, the proposed method reduces overshoot effectively and improves the response speed of the system. The control system has the better performance of anti-disturbance.

Keywords

Permanent magnet synchronous motor; Disturbance observer; Hamiltonian system; Active disturbance rejection control; Vector control

Citation

  • Journal: Electrical Engineering
  • Year: 2024
  • Volume:
  • Issue:
  • Pages:
  • Publisher: Springer Science and Business Media LLC
  • DOI: 10.1007/s00202-024-02673-5

BibTeX

@article{Fan_2024,
  title={{Active disturbance observation rejection control based on port-controlled Hamiltonian with dissipation model for PMSM}},
  ISSN={1432-0487},
  DOI={10.1007/s00202-024-02673-5},
  journal={Electrical Engineering},
  publisher={Springer Science and Business Media LLC},
  author={Fan, Bo and Hu, Qingwei and Wang, Jianxiang and Zhao, Yi and Zhou, Hangyu and Sun, Lifan},
  year={2024}
}

Download the bib file

References

  • Rubino, S., Dordevic, O., Bojoi, R. & Levi, E. Modular Vector Control of Multi-Three-Phase Permanent Magnet Synchronous Motors. IEEE Trans. Ind. Electron. 68, 9136–9147 (2021) – 10.1109/tie.2020.3026271
  • Woldegiorgis, A. T., Ge, X., Wang, H. & Hassan, M. A New Frequency Adaptive Second-Order Disturbance Observer for Sensorless Vector Control of Interior Permanent Magnet Synchronous Motor. IEEE Trans. Ind. Electron. 68, 11847–11857 (2021) – 10.1109/tie.2020.3047065
  • Zhang, K. et al. Tolerant Sequential Model Predictive Direct Torque Control of Permanent Magnet Synchronous Machine Drives. IEEE Trans. Transp. Electrific. 6, 1167–1176 (2020) – 10.1109/tte.2020.3008828
  • Zhang, K. et al. Field Enhancing Model Predictive Direct Torque Control of Permanent Magnet Synchronous Machine. IEEE Trans. Energy Convers. 36, 2924–2933 (2021) – 10.1109/tec.2021.3070339
  • Nguyen, A. T., Rafaq, M. S., Choi, H. H. & Jung, J.-W. A Model Reference Adaptive Control Based Speed Controller for a Surface-Mounted Permanent Magnet Synchronous Motor Drive. IEEE Trans. Ind. Electron. 65, 9399–9409 (2018) – 10.1109/tie.2018.2826480
  • Liu, K., Feng, J., Guo, S., Xiao, L. & Zhu, Z.-Q. Identification of Flux Linkage Map of Permanent Magnet Synchronous Machines Under Uncertain Circuit Resistance and Inverter Nonlinearity. IEEE Trans. Ind. Inf. 14, 556–568 (2018) – 10.1109/tii.2017.2722470
  • Wei, Y., Wei, Y., Sun, Y., Qi, H. & Guo, X. Prediction Horizons Optimized Nonlinear Predictive Control for Permanent Magnet Synchronous Motor Position System. IEEE Trans. Ind. Electron. 67, 9153–9163 (2020) – 10.1109/tie.2019.2955433
  • Hao, Z. et al. Linear/Nonlinear Active Disturbance Rejection Switching Control for Permanent Magnet Synchronous Motors. IEEE Trans. Power Electron. 36, 9334–9347 (2021) – 10.1109/tpel.2021.3055143
  • Liu, X.-D., Li, K. & Zhang, C.-H. Improved Backstepping Control with Nonlinear Disturbance Observer for the Speed Control of Permanent Magnet Synchronous Motor. J. Electr. Eng. Technol. 14, 275–285 (2019) – 10.1007/s42835-018-00021-9
  • Chen, J. et al. Nonlinear adaptive speed control of a permanent magnet synchronous motor: A perturbation estimation approach. Control Engineering Practice 85, 163–175 (2019) – 10.1016/j.conengprac.2019.01.019
  • Mendoza-Mondragon, F., Hernandez-Guzman, V. M. & Rodriguez-Resendiz, J. Robust Speed Control of Permanent Magnet Synchronous Motors Using Two-Degrees-of-Freedom Control. IEEE Trans. Ind. Electron. 65, 6099–6108 (2018) – 10.1109/tie.2017.2786203
  • E Benfriha, J King Saud Univ-Eng Sci (2020)
  • Larbaoui, A., Chaouch, D. E., Belabbes, B. & Razkallah, M. Application of passivity-based and sliding mode control of permanent magnet synchronous motor under controlled voltage. Journal of Vibration and Control 28, 1267–1278 (2021) – 10.1177/1077546321989507
  • Benevieri, A. et al. Surface Permanent Magnet Synchronous Motors’ Passive Sensorless Control: A Review. Energies 15, 7747 (2022) – 10.3390/en15207747
  • Belkhier, Y. et al. Interconnection and damping assignment passivity-based non-linear observer control for efficiency maximization of permanent magnet synchronous motor. Energy Reports 8, 1350–1361 (2022)10.1016/j.egyr.2021.12.057
  • ZHOU Kai, Electric Mach Control (2018)
  • Li, Z., Yang, K., Zhang, Y., Liu, A. & Yang, F. Improved Active Disturbance Rejection Control of Permanent-Magnet Synchronous Motor Based on BP neural network. 2020 23rd International Conference on Electrical Machines and Systems (ICEMS) (2020) doi:10.23919/icems50442.2020.9290892 – 10.23919/icems50442.2020.9290892
  • Zuo, Y. et al. Linear Active Disturbance Rejection Controllers for PMSM Speed Regulation System Considering the Speed Filter. IEEE Trans. Power Electron. 36, 14579–14592 (2021) – 10.1109/tpel.2021.3098723
  • L Zhu, IEEE Trans Energy Convers (2022)
  • Wang, R. et al. Certain SPMSM servo system passive control using IPSO fuzzy active disturbance rejection technique. 2019 Chinese Control Conference (CCC) 863–869 (2019) doi:10.23919/chicc.2019.8865536 – 10.23919/chicc.2019.8865536
  • Wang, Q., Yu, H., Wang, M. & Qi, X. An Improved Sliding Mode Control Using Disturbance Torque Observer for Permanent Magnet Synchronous Motor. IEEE Access 7, 36691–36701 (2019) – 10.1109/access.2019.2903439
  • Qu, L., Qiao, W. & Qu, L. Active-Disturbance-Rejection-Based Sliding-Mode Current Control for Permanent-Magnet Synchronous Motors. IEEE Trans. Power Electron. 36, 751–760 (2021) – 10.1109/tpel.2020.3003666
  • Liu, X. et al. ACTIVE DISTURBANCE REJECTION SENSORLESS CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR BASED ON THE FUZZY NEURAL NETWORK LEFT INVERSE SYSTEM. PIER C 130, 57–67 (2023) – 10.2528/pierc22112402
  • Guo, B., Bacha, S. & Alamir, M. A review on ADRC based PMSM control designs. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society 1747–1753 (2017) doi:10.1109/iecon.2017.8216296 – 10.1109/iecon.2017.8216296