Acceleration of Reinforcement Learning for Port-Hamiltonian Systems Using Natural Gradient
Authors
Shuichi FUKUNAGA, Yuki IWAMOTO
Abstract
No available
Citation
- Journal: Transactions of the Society of Instrument and Control Engineers
- Year: 2023
- Volume: 59
- Issue: 2
- Pages: 70–76
- Publisher: The Society of Instrument and Control Engineers
- DOI: 10.9746/sicetr.59.70
BibTeX
@article{FUKUNAGA_2023,
title={{Acceleration of Reinforcement Learning for Port-Hamiltonian Systems Using Natural Gradient}},
volume={59},
ISSN={1883-8189},
DOI={10.9746/sicetr.59.70},
number={2},
journal={Transactions of the Society of Instrument and Control Engineers},
publisher={The Society of Instrument and Control Engineers},
author={FUKUNAGA, Shuichi and IWAMOTO, Yuki},
year={2023},
pages={70--76}
}
References
- Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015) – 10.1038/nature14236
- Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017) – 10.1038/nature24270
- Viharos, Z. J. & Jakab, R. Reinforcement Learning for Statistical Process Control in Manufacturing. Measurement 182, 109616 (2021) – 10.1016/j.measurement.2021.109616
- Kober, J., Bagnell, J. A. & Peters, J. Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32, 1238–1274 (2013) – 10.1177/0278364913495721
- Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J. & Quillen, D. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. The International Journal of Robotics Research 37, 421–436 (2017) – 10.1177/0278364917710318
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Sprangers, O., Babuska, R., Nageshrao, S. P. & Lopes, G. A. D. Reinforcement Learning for Port-Hamiltonian Systems. IEEE Trans. Cybern. 45, 1017–1027 (2015) – 10.1109/tcyb.2014.2343194
- Peters, J. & Schaal, S. Natural Actor-Critic. Neurocomputing 71, 1180–1190 (2008) – 10.1016/j.neucom.2007.11.026
- Amari, S. Natural Gradient Works Efficiently in Learning. Neural Computation 10, 251–276 (1998) – 10.1162/089976698300017746
- Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M. & Lee, M. Natural actor–critic algorithms. Automatica 45, 2471–2482 (2009) – 10.1016/j.automatica.2009.07.008
- Iwaki, R. & Asada, M. Implicit incremental natural actor critic algorithm. Neural Networks 109, 103–112 (2019) – 10.1016/j.neunet.2018.10.007
- Sutton, R. S. Learning to predict by the methods of temporal differences. Mach Learn 3, 9–44 (1988) – 10.1007/bf00115009
- Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Optuna. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 2623–2631 (2019) doi:10.1145/3292500.3330701 – 10.1145/3292500.3330701