A Stability-Guaranteed Variable Admittance Control Architecture for Complex Physical Interaction Tasks With Multiple Scenarios
Authors
Hao Zhou, Xin Zhang, Jinguo Liu, Zhaojie Ju
Abstract
Interaction stability is an important concern in variable admittance control, and it is a prerequisite for achieving the desired compliant interaction with humans or uncertain environments. Different variable admittance controllers with essential stability analyses are required for multiple interaction scenarios in a complex task, where stability analysis is the major difficulty. In this article, we propose a unified stability-guaranteed variable admittance control architecture to decrease the control system complexity, in which we represent the admittance control model as a port-Hamiltonian (pH) system and design an energy tank with the optimization theory. The advantages of the proposed architecture are reflected in several aspects: 1) compatibility with common strategies; 2) perturbation resistance; and 3) passivity as a natural property. As the dissipated energy from the pH system is injected into the energy tank while the energy in the tank is used to support the interaction and perturbation resistance, the best passive approximation of the desired behaviors is generated, which can avoid the control signal failure (control signal failure denotes that the unexpected input \( u=0 \) occurs due to a lack of energy in the tank). Three different groups of experiments are conducted to verify the feasibility, perturbation resistance, and practicality of the proposed architecture.
Citation
- Journal: IEEE Transactions on Systems, Man, and Cybernetics: Systems
- Year: 2025
- Volume: 55
- Issue: 3
- Pages: 1746–1758
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tsmc.2024.3514154
BibTeX
@article{Zhou_2025,
title={{A Stability-Guaranteed Variable Admittance Control Architecture for Complex Physical Interaction Tasks With Multiple Scenarios}},
volume={55},
ISSN={2168-2232},
DOI={10.1109/tsmc.2024.3514154},
number={3},
journal={IEEE Transactions on Systems, Man, and Cybernetics: Systems},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Zhou, Hao and Zhang, Xin and Liu, Jinguo and Ju, Zhaojie},
year={2025},
pages={1746--1758}
}
References
- Yang, C., Peng, G., Cheng, L., Na, J. & Li, Z. Force Sensorless Admittance Control for Teleoperation of Uncertain Robot Manipulator Using Neural Networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems vol. 51 3282–3292 (2021) – 10.1109/tsmc.2019.2920870
- Gao, Y. & Chien, S. Review on space robotics: Toward top-level science through space exploration. Science Robotics vol. 2 (2017) – 10.1126/scirobotics.aan5074
- Wei, B. et al. An Improved Variable Spring Balance Position Impedance Control for a Complex Docking Structure. International Journal of Social Robotics vol. 8 619–629 (2016) – 10.1007/s12369-016-0344-0
- Zhang, X., Liu, J., Feng, J., Liu, Y. & Ju, Z. Effective Capture of Nongraspable Objects for Space Robots Using Geometric Cage Pairs. IEEE/ASME Transactions on Mechatronics vol. 25 95–107 (2020) – 10.1109/tmech.2019.2952552
- Roveda, L., Castaman, N., Franceschi, P., Ghidoni, S. & Pedrocchi, N. A Control Framework Definition to Overcome Position/Interaction Dynamics Uncertainties in Force-Controlled Tasks. 2020 IEEE International Conference on Robotics and Automation (ICRA) 6819–6825 (2020) doi:10.1109/icra40945.2020.9197141 – 10.1109/icra40945.2020.9197141
- Keemink, A. Q., van der Kooij, H. & Stienen, A. H. Admittance control for physical human–robot interaction. The International Journal of Robotics Research vol. 37 1421–1444 (2018) – 10.1177/0278364918768950
- Arney. On-Orbit Servicing, Assembly, and Manufacturing (OSAM) State of Play, 2021 Edition (2021)
- Zhang, X. et al. A practical PID variable stiffness control and its enhancement for compliant force-tracking interactions with unknown environments. Science China Technological Sciences vol. 66 2882–2896 (2023) – 10.1007/s11431-022-2436-y
- Han, L., Xu, W., Kang, P. & Yuan, H. Unified Neural Adaptive Control for Multiple Human–Robot–Environment Interactions. IEEE Transactions on Industrial Informatics vol. 17 1166–1175 (2021) – 10.1109/tii.2020.2977051
- Laghi, M., Ajoudani, A., Catalano, M. G. & Bicchi, A. Unifying bilateral teleoperation and tele-impedance for enhanced user experience. The International Journal of Robotics Research vol. 39 514–539 (2019) – 10.1177/0278364919891773
- Yang, C., Luo, J., Liu, C., Li, M. & Dai, S.-L. Haptics Electromyography Perception and Learning Enhanced Intelligence for Teleoperated Robot. IEEE Transactions on Automation Science and Engineering vol. 16 1512–1521 (2019) – 10.1109/tase.2018.2874454
- Wu, Y. et al. A Teleoperation Interface for Loco-Manipulation Control of Mobile Collaborative Robotic Assistant. IEEE Robotics and Automation Letters vol. 4 3593–3600 (2019) – 10.1109/lra.2019.2928757
- Yang, C., Zeng, C., Fang, C., He, W. & Li, Z. A DMPs-Based Framework for Robot Learning and Generalization of Humanlike Variable Impedance Skills. IEEE/ASME Transactions on Mechatronics vol. 23 1193–1203 (2018) – 10.1109/tmech.2018.2817589
- Lee, C.-H. & Wang, W.-C. Robust adaptive position and force controller design of robot manipulator using fuzzy neural networks. Nonlinear Dynamics vol. 85 343–354 (2016) – 10.1007/s11071-016-2689-1
- Li, L., Wang, Z., Zhu, G. & Zhao, J. Position‐based force tracking adaptive impedance control strategy for robot grinding complex surfaces system. Journal of Field Robotics vol. 40 1097–1114 (2023) – 10.1002/rob.22169
- Califano, F., van Dijk, D. & Roozing, W. A Task-Based Post-Impact Safety Protocol Based on Energy Tanks. IEEE Robotics and Automation Letters vol. 7 8791–8798 (2022) – 10.1109/lra.2022.3187254
- Heinzmann, J. & Zelinsky, A. Quantitative Safety Guarantees for Physical Human-Robot Interaction. The International Journal of Robotics Research vol. 22 479–504 (2003) – 10.1177/027836403128965231
- Liao, Z. et al. Dynamic Skill Learning From Human Demonstration Based on the Human Arm Stiffness Estimation Model and Riemannian DMP. IEEE/ASME Transactions on Mechatronics vol. 28 1149–1160 (2023) – 10.1109/tmech.2022.3212707
- Dong, Y. & Ren, B. UDE-Based Variable Impedance Control of Uncertain Robot Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems vol. 49 2487–2498 (2019) – 10.1109/tsmc.2017.2767566
- Roveda, L. et al. Optimal Impedance Force-Tracking Control Design With Impact Formulation for Interaction Tasks. IEEE Robotics and Automation Letters vol. 1 130–136 (2016) – 10.1109/lra.2015.2508061
- Duan, J., Gan, Y., Chen, M. & Dai, X. Adaptive variable impedance control for dynamic contact force tracking in uncertain environment. Robotics and Autonomous Systems vol. 102 54–65 (2018) – 10.1016/j.robot.2018.01.009
- Yang, C. et al. Neural Networks Enhanced Adaptive Admittance Control of Optimized Robot–Environment Interaction. IEEE Transactions on Cybernetics vol. 49 2568–2579 (2019) – 10.1109/tcyb.2018.2828654
- Han, L., Yuan, H., Xu, W. & Huang, Y. Modified Dynamic Movement Primitives: Robot Trajectory Planning and Force Control Under Curved Surface Constraints. IEEE Transactions on Cybernetics vol. 53 4245–4258 (2023) – 10.1109/tcyb.2022.3158029
- Liu, X., Liu, Z. & Huang, P. Stochastic Optimal Control for Robot Manipulation Skill Learning Under Time-Varying Uncertain Environment. IEEE Transactions on Cybernetics vol. 54 2015–2025 (2024) – 10.1109/tcyb.2022.3211440
- Rashad, R. et al. Energy Aware Impedance Control of a Flying End-Effector in the Port-Hamiltonian Framework. IEEE Transactions on Robotics vol. 38 3936–3955 (2022) – 10.1109/tro.2022.3183532
- Jin, Z., Qin, D., Liu, A., Zhang, W. & Yu, L. Model Predictive Variable Impedance Control of Manipulators for Adaptive Precision-Compliance Tradeoff. IEEE/ASME Transactions on Mechatronics vol. 28 1174–1186 (2023) – 10.1109/tmech.2022.3204350
- Ferraguti, F. et al. A variable admittance control strategy for stable physical human–robot interaction. The International Journal of Robotics Research vol. 38 747–765 (2019) – 10.1177/0278364919840415
- Wu, Y., Zhao, F., Tao, T. & Ajoudani, A. A Framework for Autonomous Impedance Regulation of Robots Based on Imitation Learning and Optimal Control. IEEE Robotics and Automation Letters vol. 6 127–134 (2021) – 10.1109/lra.2020.3033260
- Benzi, F., Ferraguti, F., Riggio, G. & Secchi, C. An Energy-Based Control Architecture for Shared Autonomy. IEEE Transactions on Robotics vol. 38 3917–3935 (2022) – 10.1109/tro.2022.3180885
- Subramaniam, R. & Joo, Y. H. Passivity-Based Fuzzy ISMC for Wind Energy Conversion Systems With PMSG. IEEE Transactions on Systems, Man, and Cybernetics: Systems vol. 51 2212–2220 (2021) – 10.1109/tsmc.2019.2930743
- Zhou, H., Zhang, X. & Liu, J. A corrective shared control architecture for human–robot collaborative polishing tasks. Robotics and Computer-Integrated Manufacturing vol. 92 102876 (2025) – 10.1016/j.rcim.2024.102876
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Li, Z. et al. Adaptive Impedance Control of Human–Robot Cooperation Using Reinforcement Learning. IEEE Transactions on Industrial Electronics vol. 64 8013–8022 (2017) – 10.1109/tie.2017.2694391
- Kim, S. & Ryu, J. Robust interaction control for environments having uncertainties. Robotics and Autonomous Systems vol. 151 104023 (2022) – 10.1016/j.robot.2022.104023
- Song, P., Yu, Y. & Zhang, X. A Tutorial Survey and Comparison of Impedance Control on Robotic Manipulation. Robotica vol. 37 801–836 (2019) – 10.1017/s0263574718001339
- Bin Yao, Chan, S. P. & Danwei Wang. Unified formulation of variable structure control schemes for robot manipulators. IEEE Transactions on Automatic Control vol. 39 371–376 (1994) – 10.1109/9.272337
- Schwerdtner, P. & Voigt, M. Fixed-order H-infinity controller design for port-Hamiltonian systems. Automatica vol. 152 110918 (2023) – 10.1016/j.automatica.2023.110918
- Liu, X. & Liao, X. Fixed-Time Control for a Class of Nonlinear PH-DAE Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems vol. 53 5161–5173 (2023) – 10.1109/tsmc.2023.3258447
- Secchi. Control of Interactive Robotic Interfaces: A Port-Hamiltonian Approach (2007)
- Macchelli, A. Control Design for a Class of Discrete-Time Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 68 8224–8231 (2023) – 10.1109/tac.2023.3292180
- Ferraguti, F. et al. An Energy Tank-Based Interactive Control Architecture for Autonomous and Teleoperated Robotic Surgery. IEEE Transactions on Robotics vol. 31 1073–1088 (2015) – 10.1109/tro.2015.2455791
- Minelli, M. et al. Two-Layer-Based Multiarms Bilateral Teleoperation Architecture. IEEE Transactions on Control Systems Technology vol. 31 1266–1279 (2023) – 10.1109/tcst.2022.3225732
- Secchi, C. & Ferraguti, F. Energy optimization for a Robust and Flexible Interaction Control. 2019 International Conference on Robotics and Automation (ICRA) 1919–1925 (2019) doi:10.1109/icra.2019.8794055 – 10.1109/icra.2019.8794055
- Liao, Z. et al. An Ergo-Interactive Framework for Human-Robot Collaboration Via Learning From Demonstration. IEEE Robotics and Automation Letters vol. 9 359–366 (2024) – 10.1109/lra.2023.3328366
- Kim, M. J., Werner, A., Loeffl, F. & Ott, C. Passive Impedance Control of Robots With Viscoelastic Joints Via Inner-Loop Torque Control. IEEE Transactions on Robotics vol. 38 584–598 (2022) – 10.1109/tro.2021.3071617
- Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G. & Diehl, M. qpOASES: a parametric active-set algorithm for quadratic programming. Mathematical Programming Computation vol. 6 327–363 (2014) – 10.1007/s12532-014-0071-1
- Jung, S., Hsia, T. C. & Bonitz, R. G. Force Tracking Impedance Control of Robot Manipulators Under Unknown Environment. IEEE Transactions on Control Systems Technology vol. 12 474–483 (2004) – 10.1109/tcst.2004.824320
- Zhou, H., Zhang, X., Liu, J. & Ju, Z. An Active-Passive Compliance Strategy for Robotic Plugging and Unplugging of Rocket Electrical Connectors. IEEE/ASME Transactions on Mechatronics 1–12 (2024) doi:10.1109/tmech.2024.3410016 – 10.1109/tmech.2024.3410016